CHAPTER 3

Transcendental
Functions

Introduction With the exception of the trigonometric functions, all the functions
we have encountered so far have been of three main types: polynomials, rational
functions (quotients of polynomials), and algebraic functions (fractional powers
of rational functions). On an interval in its domain, each of these functions can
be constructed from real numbers and a single real variable x by using finitely
many arithmetic operations (addition, subtraction, multiplication, and division) and
by taking finitely many roots (fractional powers). Functions that cannot be so
constructed are called transcendental functions. The only examples of these that
we have seen so far are the trigonometric functions.

Much of the importance of calculus and many of its most useful applications
result from its ability to illuminate the behaviour of transcendental functions that
arise naturally when we try to model concrete problems in mathematical terms.
This chapter is devoted to developing other transcendental functions, including
exponential and logarithmic functions and the inverse trigonometric functions.

Some of these functions “undo” what other ones “do,” and vice versa. When
a pair of functions behaves this way, we call each one the inverse of the other. We
begin the chapter by studying inverse functions in general.

Consider the function

f&) =3,

whose graph is shown in Figure 3.1. Like any function, f(x) has only one value
for each x in its domain (the whole real line R). In geometric terms, any vertical
line meets the graph of f at only one point. For this function f, any horizontal line
also meets the graph at only one point. This means that different values of x always
give different values to f(x). Such a function is said to be one-to-one.

A function f is one-to-one if f(x;) # f(x2) whenever x; and x; belong to
the domain of f and x; # x; or, equivalently, if

fx) = fx) = x1=ux.

A function defined on a single interval is one-to-one there if it is either increasing
or decreasing.

Because f(x) = x3 is one-to-one, the equation

y=2x’
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Figure 3.1 The graph of f(x) = x>

Do not confuse the —1 in f~!
with an exponent. The inverse
£~ is not the reciprocal 1/f. If
we want to denote the reciprocal
1/f(x) with an exponent we can

write it as (f(x))'l.

Figure 3.2

(a) f is one-to-one and has an inverse.

has a unique solution x for every given value of y in the range of f. Specifically,
xX=y

This equation defines x as a function of y. We call this new function the inverse of
f and denote it £~1. Thus

oy =y

Whenever a function f is one-to-one, for any number y in its range there will always
exist a single number x in its domain such that y = f(x). Since x is determined
uniquely by y, it is a function of y. We write x = f~!(y) and call f~! the inverse
of f. The function f whose graph is shown in Figure 3.2(a) is one-to-one and has
an inverse. The function g whose graph is shown in Figure 3.2(b) is not one-to-one
and does not have an inverse.

y y

y = gx)

y = f(x) means the same thing as |

x= 1"ty

(b) g is not one-to-one

NITION a

(a) (b)

We usually like to write functions with the domain variable called x rather than y,
so we reverse the roles of x and y and reformulate the above definition as follows.

If f is one-to-one, then it has an inverse function . The value of f~'(x)
is the unique number y in the domain of f for which f(y) = x. Thus,

y=f1x) < x=/f@).

3 1/3

As observed above, y = x° is equivalent to x = v'/°, or, reversing the roles of x

and y,

y=x1/3 — x:y3.

m Show that f(x) = 2x — 1 is one-to-one, and find its inverse f ! (x).

Solution Since f'(x) = 2 > 0 on R, f is increasing and therefore one-to-one
there. Let y = f~'(x). Then

x=f(y=2y-1

x+1

1
Solving this equation for y gives y = % Thus f~!(x) = 3




Figure 3.3 The graph of
y = f~1(x) is the reflection of the
graphof y = f(x) intheline y = x
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There are several things you should remember about the relationship between a
function f and its inverse f~'. The most important one is that the two equations

y=f1® ad x=f(
say the same thing. They are equivalent just as, for example, y = x + 1 and

x = y — 1 are equivalent. Either of the equations can be replaced by the other. This
implies that the domain of f~! is the range of f, and vice versa.

The inverse of a one-to-one function is itself one-to-one and so also has an
inverse. Not surprisingly, the inverse of f~!is f:

y=(Hx) = x=fy) e y=f@).

We can substitute either of the equations y = f~!(x) or x = f(y) into the other
and obtain the cancellation identities:

fiFt@)=x, 1 fo») =y
The first of these identities holds for all x in the domain of ! and the second for
all y in the domain of f. If S is any set of real numbers and 75 denotes the identity
function on S, defined by

Is(x) =x forallxins,
then the cancellation identities say that if D( f) is the domain of f, then

foft=Ipyy and  flof=Ipy,
where f o g(x) denotes the composition f(g(x)).

If the coordinates of a point P = (a, b) are exchanged to give those of a new
point Q = (b, a), then each point is the reflection of the other in the line x = y.
(To see this, note that the line P Q has slope —1, so it is perpendicular to y = x.
Also, the midpoint of P Q is (#, l%), which lies on y = x.) It follows that the
graphs of the equations x = f(y) and y = f(x) are reflections of each other in the
line x = y. Since the equation x = f(y) is equivalent to y = f~'(x), the graphs
of the functions f~! and f are reflections of each other in y = x. See Figure 3.3.

y
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Figure 3.4

(a) The graphs of g(x) = v/2x + 1
and its inverse

(b) The graph of the self-inverse
function f(x) = 1/x

NITION B

Here is a summary of the properties of inverse functions discussed above:

Properties of inverse functions

y=f1x & x=f).

The domain of f~! is the range of f.

The range of f~! is the domain of f.

F7H(f (%)) = x for all x in the domain of f.

F(f7'(x)) = x for all x in the domain of f~!.

(fFH~(x) = f(x) for all x in the domain of f.

The graph of £~ is the reflection of the graph of f in the line x = y.

S B T Y e

IS ¥A Show that g(x) = +/2x + 1 is invertible and find its inverse.

Solution If g(x1) = g(x2), then \/2x; + 1 = /2x, + 1. Squaring both sides we
get 2x; + 1 = 2x, + 1, which implies that x; = x3. Thus, g is one-to-one and
invertible. Let y = g~!(x); then

x=g()=v2y+1

x2—1
2

It follows that x > 0 and x> = 2y + 1. Therefore, y = and

2
x2—
forx > 0.

gl x) =

(The restriction x > 0 applies since the range of g is [0, oo[.) See Figure 3.4(a) for

the graphs of g and g~ .

(@) (b)

A function f is self-inverse if f~! = f, thatis, if f(f(x)) = x for every x
in the domain of f.
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The function f(x) = 1/x is self-inverse. If y = f~!(x), then

1

x = f(y) = 1/y. Therefore y = 1/x,s0 f~1(x) = — = f(x). See Figure 3.4(b).
X

The graph of any self-inverse function must be its own reflection in the linex =y

and must therefore be symmetric about that line.
|

y
y=Fl)
Yy = xz a
1 .
, .
£ ,'
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Figure 3.5 The restriction F of x2
to [0, oof and its inverse F~!

X

Inverting Non-One-to-One Functions

Many important functions such as the trigonometric functions are not one-to-one
on their whole domains. It is still possible to define an inverse for such a function,
but we have to restrict the domain of the function artificially so that the restricted
function is one-to-one.

As an example, consider the function f(x) = xZ. Unrestricted, its domain is
the whole real line and it is not one-to-one since f(—a) = f(a) for any a. Let us
define a new function F'(x) equal to f(x) but having a smaller domain, so that it is
one-to-one. We can use the interval [0, oo[ as the domain of F:

F(x)=)c2 for 0<x < o0.

The graph of F is shown in Figure 3.5; it is the right half of the parabola y = x?, the
graph of f. Evidently F is one-to-one, so it has an inverse F~! which we calculate
as follows:

Lety = F~'(x), thenx = F(y) = y>and y > 0. Thus y = ,/x. Hence
Fl(x)= VX,

This method of restricting the domain of a non-one-to-one function to make it
invertible will be used when we invert the trigonometric functions in Section 3.5.

Derivatives of Inverse Functions

Suppose that the function f is differentiable on an interval ]a, b[ and that either
f'(x) > 0fora < x < b (so that f is increasing on la, b[) or f'(x) < O for
a < x < b (sothat f is decreasing on la, b[). In either case f is one-to-one on
la, b[ and has an inverse, f~!, defined by

y:f_l(x) = x=f(y), (a <y <b).

Since we are assuming that the graph y = f(x) has a nonhorizontal tangent line at
any x in Ja, b, its reflection, the graph y = f~!(x), has a nonvertical tangent line
at any x in the interval between f(a) and f (b). Therefore, f~! is differentiable at
any such x. (See Figure 3.6.)

Let y = f~!(x). We want to find dy/dx. Solve the equation y = f~!(x) for
x = f(y) and differentiate implicitly with respect to x to obtain

— oy y_ 1 _ 1
IV Y G TFe T T w)




180 CHAPTER 3 Transcendental Functions

Figure 3.6 Tangents to the graphs of

fand 7!
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/ graph of ™!
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Therefore, the slope of the graph of f~! at (x, y) is the reciprocal of the slope of
the graph of f at (y, x) (Figure 3.6) and

A4 ayn ]
. )

dy 1
dx

dx
dy

In terms of Leibniz notation we have

X

y=r-'

F'ETNTIN M Show that f(x) = x3 + x is one-to-one on the whole real line, and,

noting that f(2) = 10, find (')’ (10).

Solution Since f'(x) = 3x?+ 1 > 0 for all real numbers x, f is increasing and
therefore one-to-one and invertible. If y = f~!(x), then

— 1=Gy+ 1Dy
1
!

Y=

x=f)=y+y

=

Now x = f(2) = 10 implies y = f~!(10) = 2. Thus,

1

—1\ _
() ao = SRS

13
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Show that the functions f in Exercises 1-12 are one-to-one and
calculate the inverse functions f~!. Specify the domains and
ranges of f and f~!.

1. fx)=x—1 2. fx)y=2x—1

3 fix)y=+vx—1 4., f(x) = —vx—1

5. flx)=x> 6. f(x)=1+Ix

7. fx)=x>, x<0 8 fx)=(1-2x)°

) 1 X

9. f(x) = — 10. f(x) = o
1—2x x

1. f(x) = T 12. f(x) = \/—;—2‘;

25.
26.

27.

28.

29.
*30.

B 31

In Exercises 13-20, f is a one-to-one function with inverse f—1. g 32

Calculate the inverses of the given functions in terms of f~1.
13. g(x) = f(x) —2 14. h(x) = f(2x)
15. k(x) = =3 f(x) 16. m(x) = f(x —2)

__ _fx-3
17. p(x) = Tr 7. 18. g(x) = 2
19. r(x) =1 =23 —4x)  20. s(x) = t—ﬁi—;

In Exercises 21-23, show that the given function is one-to-one
and find its inverse.

2 .
1. z{x +1 ifx>0
F) x+1 ifx <0
3 .
22, o(x z{x ifx>0
800 ¥ ifx <0

23. h(x) =x|x| +1
24. Find f=12) if f(x) = x3 + x.

33.

34.

* 35,

* 36.
* 37,

= 38.

Find g7 1(1) if g(x) = x> + x — 9.
Find A~ 1(=3) if h(x) = x|x| + 1.
1
Assume that the function f(x) satisfies f’(x) = < and that

f is one-to-one. If y = f~1(x), show that dy/dx = y.
3

Show that f(x) = 2x has an inverse and find
) x*+1

(@

Find (£ ') () if £(x) = 1 +2x3.

Find (f~') (=2) if f(x) = xy/3 + 22,

If £(x) = x2/(1 + /%), find f~1(2) correct to 5 decimal
places.

. If g(x) = 2x + sin x, show that g is invertible, and find

g~ 1(2) and (g71)(2) correct to five decimal places.

Show that f(x) = x sec x is one-to-one on ] — /2, 7/2[.
What is the domain of £~!(x)? Find (f 1) (0).

If f and g have respective inverses f~! and g~ !, show that
the composite function f o g has inverse

(fog)l=g lof .

For what values of the constants a, b, and c is the function
f(x) = (x —a)/(bx — ¢) self-inverse?

Can an even function be self-inverse? an odd function?

In this section it was claimed that an increasing (or
decreasing) function defined on a single interval is
necessarily one-to-one. Is the converse of this statement
true? Explain.

Repeat the previous exercise with the added assumption that
f is continuous on the interval where it is defined.

This section reviews exponential and logarithmic functions in a form that you are
likely to have encountered in your previous mathematical studies. In the following
sections we will approach these functions from a different point of view and learn
how to find their derivatives.

Exponentials

An exponential function is a function of the form f(x) = a*, where the base
a is a positive constant and the exponent x is the variable. Do not confuse such
functions with power functions like f(x) = x“, where the base is variable and the
exponent is constant. The exponential function a* can be defined for integer and
rational exponents x as follows:
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Exponential Functions

If a > 0, then
=1
ad'=a-a-a---a ifn=1,2,3,...
—— e/

n factors

_ 1 .
at=— ifn=1,2,3,...
an
a™n = gm ifn=1,2,3,... andm==£1,£2,£3,....

In this definition, /a is the number b > 0 that satisfies b” = a.

How should we define a* if x is not ratidri))al? For example, what does 2™ mean? In
order to calculate a derivative of a* we will want the function to be defined for all
real numbers x, not just rational ones.

. In Figure 3.7 we plot points with coordinates (x, 2*) for many closely spaced
Lo rational values of x. They appear to lie on a smooth curve. The definition of a* can
be extended to irrational x in such a way that a* becomes a differentiable function
of x on the whole real line. We will do so in the next section. For the moment, if x
X isirrational we can regard a* as being the limit of values a” for rational numbers r
Figure 3.7 y = 2" for rational r approaching x:

a* = lim d’.
X
r rational

IR E  Since the irrational number 7 = 3.14159265359 . . . is the limit of
the sequence of rational numbers

ri=3 r=31 ri=3.14, ry=3.141, rs=3.1415 ...,
we can calculate 27 as the limit of the corresponding sequence
2 =8, 2%1=8.5741877..., 23" =8.8152409....

This gives 27 = lim, o, 2™ = 8.824977827 . ...

Exponential functions satisfy several identities called laws of exponents:

Laws of exponents
Ifa > 0and b > 0, and x and y are any real numbers, then
@ a®=1 G) P =da"a’
1 x
(i) a* = — ) o =2
a* a’
W @y =a” i) (ab)* =a* b*

These identities can be proved for rational exponents using the definitions above.
They remain true for irrational exponents, but we can’t show that until the next
section.



Figure 3.8

(a) Graphs of some exponential
functions

(b) Graphs of some logarithmic
functions

—
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Ifa = 1, then @* = 1* = 1 for every x. If a > 1, then a* is an increasing
function of x; if 0 < a < 1, then a* is decreasing. The graphs of some typical
exponential functions are shown in Figure 3.8(a). They all pass through the point
(0,1) since a® = 1 for every a > 0. Observe that a* > 0 for all @ > 0 and all real
x and that

a1, then  lim a*=0 and  lim a* = oo.
D S o & X—> 00

If O<ag<l then lim ¢ =00 and  lima* =0.
R o cugd O 91 X =00

The graph of y = a* has the x-axis as a horizontal asymptote if a # 1. Itis
asymptotic on the left (as x — —oo) if @ > 1 and on the right (as x — oo} if
O0<a<l.

(b)

Logarithms

The function f(x) = a* is a one-to-one function provided that ¢ > 0 and a # 1.
Therefore, f has an inverse which we call a logarithmic function.

Logarithms

Ifa > O and a # 1, the function log, x, called the logarithm of x to the base
a, is the inverse of the one-to-one function a*:

y=log,x — x=da, (a>0, a#l).

Since a* has domain ] — oo, oo, log, x has range oo, oo[. Since a* has range
10, oc[, log, x has domain ]0, oo[. Since a* and log, x are inverse functions, the
following cancellation identities hold:

log, (a*) =x  forallreal x

@%8% =x  forall x> 0.
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The graphs of some typical logarithmic functions are shown in Figure 3.8(b). They
all pass through the point (1, 0). Each graph is the reflection in the line y = x of
the corresponding exponential graph in Figure 3.8(a).

Corresponding to the laws of exponents we have several identities involving
logarithms:

Laws of logarithms
Kx>0,v>0,a>00b>0a#1,andb # 1, then
(i) log,1=0 (ii) log,(xy) =1log,x+log,y
1
(iii) loga (;) = loga X (iv) loga (;;) = 1oga x_loga y
. log, x
) log, (x7) =y log, x o) log,x = 1

These identities can be derived from the laws of exponents.

Ifa > 0,x > 0,and y > 0, verify thatlog, (xy) = log, x +log, v,
using laws of exponents.

Solution Let u = log,x and v = log, y. By the defining property of inverse
functions, x = a* and y = a®. Thus xy = a“a® = a***. Inverting again, we get
log,(xy) =u+v =1log,x +log, y.

.|

Logarithm law (vi) presented above shows that if you know logarithms to a particular
base b, you can calculate logarithms to any other base a. Scientific calculators
usually have built-in programs for calculating logarithms to base 10 and to base
e, a special number that we will discover in Section 3.3. Logarithms to any base
can be calculated using either of these functions. For example, computer scientists
sometimes need to use logarithms to base 2. Using a scientific calculator, you can
readily calculate

logio 13 1.11394335231 ...

= = 3.70043971814... .
log,p2  0.301029995664 . ..

log, 13 =

The laws of logarithms can sometimes be used to simplify complicated expressions.

Simplify
(a) log, 10 + log, 12 — log, 15, (b)log,.a®, and (c)3"%*,

Solution
10 x 12

15

(a) log, 10 +log, 12 —log, 15 = log, (laws (ii) and (iv))
=log, 8

=log,2° =3. (cancellation identity)
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(b) log,.a®> =3log,.a (law (V)
3 .
= 2 log,. a? (law (v) again)
= % (cancellation identity)
(©) 3logg4 _ 3(logs 4)/(log; 9) (law (vi))
— (elog34)1/1083 9
=41/l — 412 =9 (cancellation identity)

e Ll Solve the equation 3*~! = 2%,
Solution We can take logarithms of both sides of the equation to any base a and

get

(x —1)log,3 =xlog,2
(log, 3 —log, 2)x =log, 3
log, 3 log, 3

T log, 3 —log, 2 log,(3/2)°

The numerical value of x can be found using the “log™ function on a scientific

calculator. (This function is log,,.) The value is x = 2.7095.. ..
]

Corresponding to the asymptotic behaviour of the exponential functions, the loga-
rithmic functions also exhibit asymptotic behaviour. Their graphs are all asymptotic
to the y-axis as x — O from the right:

If a>1, then lim log,x = —oco and lim log, x = oo.
x> 04 X—>00
If O<a<l1, then lim log,x =00 and lim log, x = —oc.
X0+ X 00
| Exercises 3.2
Simplify the expressions in Exercises 1-18. 15. logg 9 + logg 4 16. 2logy 12 — 4log; 6
3 4 2 4 2
L 3 5 oli2g1n2 17. log,(x* 4+ 3x° +2) +log,(x" + 5x“ 4+ 6)
J3 —4log, /x2 +2
2 1\* 2 18. log, (1 — cosx) + log_ (1 + cosx) —2log, sinx
3. (x ) 4. 4 Use the base 10 exponential and logarithm functions 10* and
log x ( = log;y x) on a scientific calculator to evaluate the
5. logs 125 6. log, (%) expressions or solve the equations in Exercises 19-24.
7. logy p P 8. olog,8 g 19. 3V B 20. log,5
9, 10~ 10g10(1/x) 10, x!/0og, %)
. B 21. 2% = 5+ @227 =3
11. (log, b)(log, a) 12. log, (x(logy y ))
13. (log4 16)(log, 2) 14. log;5 75 + log5 3 B 23. log,3=5 24. logzx =5




186 CHAPTER3 Transcendental Functions

Use the laws of exponents to prove the laws of logarithms in 33. lim log, 2 34. lim log, 2
Exercises 25=28. o s

+35. Suppose that f(x) = a” is differentiable at x = 0 and that
25, log, <;> = —log, x f/(0) = k, where k # 0. Prove that f is differentiable at

any real number x and that
26. log, (f) =log, x —log, y
y

27. log,(x”) = ylog, x
28. log, x = (log, x)/(log;, a)

fl@) =ka* =k f(x).

1 + 36. Continuing Exercise 35, prove that f~!(x) = log, x is
29. Solve logy(x +4) — 2logy(x + 1) = 5 for x. differentiable at any x > 0 and that
30. Solve 2logz x + logg x = 10 for x.
Evaluate the limits in Exercises 31-34. (F &) = El—
X
31. lim log,2 32. lim log,(1/2)
X—=00 x—>0+

In this section we are going to define a function In x, called the natural logarithm
of x, in a way that does not at first seem to have anything to do with the logarithms
considered in Section 3.2. We will show, however, that it has the same properties
as those logarithms, and in the end we will see that Inx = log, x, the logarithm
of x to a certain specific base e. We will show that Inx is a one-to-one function,
defined for all positive real numbers. It must therefore have an inverse, ¢*, that we
will call the exponential function. Our final goal is to arrive at a definition of the
exponential functions a* (for any a > 0) that is valid for any real number x instead
of just rational numbers, and that is known to be continuous and even differentiable
without our having to assume those properties as we did in Section 3.2.

The Natural Logarithm

Table 1. Derivatives of integer Table 1 lists the derivatives of integer powers of x. Those derivatives are multiples
powers of integer powers of x, but one integer power, x ~!, is conspicuously absent from the
list of derivatives; we do not yet know a function whose derivative is x ™! = 1/x.

S f'0 We are going to remedy this situation by defining a function In x in such a way that
. . it will have derivative 1/x.
x.3 3;c2 To get a hint as to how this can be done, review Example 1 of Section 2.1 1.‘ In
2 2% that example we showed that the area under the graph of the velocity of a moving
X! 0 =1 object in a time interval was equal to the distance travelled by the object in thaf time
0 0 interval. Since the derivative of distance is velocity, measuring the area pr0\71d§d a
-l 2 way of finding a function (the distance) that had a given derivative (the velocity).
-2 ox3 This relationship between area and derivatives is one of the most important ideas ip
3 g4 calculus. It is called the' Fuindafnental Theorem of Calculus. We will explore it

fully in Chapter 5, but we will make use of the idea now to define In x, which we
want to have derivative 1/x.




Figure 3.9
(@) Inx =—area A, if0 <x < 1

(b) Inx = area Ay if x > 1

X x+h

Figure 3.10
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The natural logarithm

For x > 0, let A, be the area of the plane region bounded by the curve
y = 1/t, the r-axis, and the vertical lines f = 1 and t = x. The function Inx
is defined by

Inx = Ay ifx>1,
MX=1_a, if0<x <1,

as shown in Figure 3.9.

The definition implies that In1 = 0, that Inx > 0 if x > 1, that Inx < O if
0 < x < 1, and that In is a one-to-one function. We now show that if y = Inx,
then ¥’ = 1/x. The proof of this result is similar to the proof we will give for the
Fundamental Theorem of Calculus in Section 5.5.

y

(a) (b)

REM ° If x > 0, then

e
g 1

PROOF Forx > 0Oand . > 0, In(x + &) — Inx is the area of the plane region
bounded by y = 1/¢, y = 0, and the vertical lines t = x and t = x + h; it is the
shaded area in Figure 3.10. Comparing this area with that of two rectangles, we see
that

h
< shaded area = In{(x + 7)) —Ilnx < —.
X x

Hence the Newton quotient for In x satisfies
1 Inx+4k)—Inx 1
<

< =
x+h h x
Letting & approach 0 from the right, we obtain (by the Squeeze Theorem applied to
one-sided limits)
In(x +h) —Inx 1
m -

h—0+ h - X ’
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A similar argument shows that if 0 < x + 2 < x, then

1 Inx+h)—Inx 1
— <

x 3 Sit+n
so that

. In(x+h)—Inx 1

lim ———— = —,

h—>0— h x
Combining these two one-sided limits we get the desired result:

In i In(x +A) — Inx 1
—hx=lim ————— = —.
dx PENG) h X

e

The two properties (d/dx)Inx = 1/x and In1 = O are sufficient to determine
the function In x completely. We can deduce from these two properties that In x
satisfies the appropriate laws of logarithms:

Properties of the natural logarithm

(@) In(ry)=lnx+Iny @ In G) = —Inx
i) In (%) =Inx—Iny (iv) In(x")=rlInx

Because we do not want to assume that exponentials are continuous (as we did in
Section 3.2), we should regard (iv) for the moment as only valid for exponents r
that are rational numbers.

PROOF We will only prove part (i) because the other parts are proved by the same
method. If y > 0 is a constant, then by the Chain Rule,

=1 d 1
y=mE — (In(xy) —Inx) = Y _ =0 forallx > 0.
dx Xy Xx
(1,0 x
Theorem 13 of Section 2.6 now tells us that In(xy) — Inx = C (a constant) for
x > 0. Putting x = 1 we get C = Iny and identity (i) follows.

s ,.
Figure 3.11 The graph of Inx Part (iv) of Theorem 2 shows that In(2") = nln2 —» oo asn — oo. Therefore, we
also have In(1/2)" = —nln2 — —oco as n — 0. Since (d/dx)Inx =1/x > 0

for x > 0, it follows that In x is increasing, so we must have (see Figure 3.11)

Hm Inx =00; lim Inx = —o0.
p gl X0
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1 1
m Show that i In |x| = — for any x # 0. Hence ﬁnd/ —dx.
dx x by

Solution If x > 0, then

d 1
— Inlx|=— Inx = —
dx dx X

by Theorem 1. If x < 0, then, using the Chain Rule,

d d 1
T Infx| = In(—x) = — (=)

1
P

d 1 . .
Therefore, Ix In |x| = —, and on any interval not containing x = 0,
X X

f;lc-dx =lIn|x| +C.

m Find the derivatives of (a) In|cosx]|, and (b) In(x + +/x2 + 1).
Simplify your answers as much as possible.

Solution

(a) Using the result of Example 1 and the Chain Rule, we have

d 1 .
—In|cosx| = ——(—sinx) = —tanx.
dx cos X

d 1 2
(b) —Inx+ Va7 +1 =———(1+—2——x——)
X

x+V/x241 x241
_ 1 Vx4 1+x
x+V/x2+1 V241
1
VRS

The Exponential Function

The function Inx is one-to-one on its domain, the interval ]0, oo[, so it has an
inverse there. For the moment, let us call this inverse expx. Thus

y=expx = x=Ihy (y>0).

Since In1 = 0, we have exp0 = 1. The domain of exp is ] — oo, oo[, the range of
In. The range of exp is ]O, co[, the domain of In. We have cancellation identities

In(expx) = x. forallreal x and exp(lnx) =x forx > 0.

We can deduce various properties of exp from corresponding properties of In. Not
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REM e

Figure 3.12 The definition of e
d
1
y=¢ /’/
/,’ 1 }
’," y=Inx
Sy=x
Figure 3.13 The graphs of * and

¥

surprisingly, they are properties we would expect an exponential function to have.

Properties of the exponential function

(ii) - exp(x+y) = (expx)(expy)
expx

explx) expy
For the moment, identity (i) is asserted only for rational numbers r,

(i) (expx)" = exp(rx)

(i) exp(~x) = (iv) explx—y)=

PROOF We prove only identity (i); the rest are done similarly. If 4 = (expx)’,
then, by Theorem 2(iv), Inu = r In(expx) = rx. Therefore u = exp(rx).

®

Now we make an important definition!

Let e=exp(l):

The number e satisfies Ine = 1, so the area bounded by the curve y = 1/¢, the
t-axis, and the vertical lines # = 1 and + = ¢ must be equal to 1 square unit. See
Figure 3.12. The number e is one of the most important numbers in mathematics.
Like 7, it is irrational and not a zero of any polynomial with rational coefficients.
(Such numbers are calied transcendental.) Its value is between 2 and 3 and begins

e==2.718281828459045. ..

Later on we will learn that

a formula from which the value of e can be calculated to any desired precision.

Theorem 3(i) shows that expr exp(lr) = (expl)” = €" holds for any
rational number r. Now here is a crucial observation. We only know what ¢” means
if r is a rational number (if r = m/n, then ¢” = Jem). But exp x is defined for all
real x, rational or not. Since ¢” = expr when r is rational, we can use exp x as a
definition of what e* means for any real number x, and there will be no contradiction

if x happens to be rational.
¥ =eéxpx for all real x.

Theorem 3 can now be restated in terms of e*:

@ ()Y =e”

(i) e

(i) e =¢ e

@iv) il

e ex—y —
er ey

The graph of ¢* is the reflection of the graph of its inverse, Inx, in the line x = y.
Both graphs are shown for comparison in Figure 3.13. Observe that the x-axis is a
horizontal asymptote of the graph of y = ¢* as x — —oo. We have
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lim &' =0, lim ¢ = o00.
X = OO X0

Since exp x = e” actually is an exponential function, its inverse must actually be a
logarithm:

Inx = log, x.

The derivative of y = ¢* is calculated by implicit differentiation:

X

y=e — x=Iny
_ldy
_;E
dy x
E:y:e.

1

—

Thus, the exponential function has the remarkable property that it is its own deriva-
tive and, therefore, also its own antiderivative:

d
et =, fe"dx:e"—f—c.
dx

Find the derivatives of

(@) e’ "3, (b)v/1+e¥, and (c) u.
et +e*
Solution
(a) A i _ gt (2x —3) = 2x — 3)e* 3*.
dx
0 Lird-— L (o) =
dx Wit Jixe
© d et —e™ _ (e t+te )" —(—e ™)) —(ef —e )" + (—e™))
dx e* +e* (e* + e ¥)?
(@) 420%™ 4 (6) — [(¢9)F — 2ee + (e )7
- (e* + e—*)2
_ 4" 4
- (e* + e=*)2 = (e* _+_e—x)2‘

Let f(r) = e™. Find (a) f?(z) and (b) [ f(t)dr.
Solution
(a) Wehave f'(t) =ae”

f'() =a’e

10 =a’e

fO®@) =a"e”.
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Do not confuse x™, which is a
power function of x, and 7%,
which is an exponential function
of x.

1 1
(b) Also,/f(t) dt = /e“' dt = — e 4 C, since d —e? = e,
a dr a

General Exponentials and Logarithms

We can use the fact that ¢* is now defined for all real x to define the arbitrary
exponential a* (where a > 0) for all real x. If r is rational, then In(a¢") = rIna;
therefore a” = "%, However, ¢*!79 is defined for all real x, so we can use it as a
definition of ¢* with no possibility of contradiction arising if x is rational.

The general exponential a*

a* = e*he, (a >0, xreal).

Evaluate 27, using the natural logarithm (In) and exponential (exp
or ¢*) keys on a scientific calculator, but not using the y* or * keys.

Solution 27 = e™'"? = 8.8249778. ... If your calculator has a* key, or an x” or

y* key, the chances are that it is implemented in terms of the exp and In functions.
||

The laws of exponents for a* as presented in Section 3.2 can now be obtained from
those for e, as can the derivative:

d d
gt = ____exlna =ex1na Ina=a*na.
dx dx

We can also verify the General Power Rule for x“, where a is any real number,
provided x > 0:

d

d a ax
a=_ea1nx=ea1nx_= —ax

dxx dx x x

[F'ETLE M  Show that the graph of f(x) = x™ — 7™ has a negative slope at
xX=nm.

Solution f'(x)=nmx""'—a*Inx

a—1

floy=aa""'—a" Inx =2"(1 — Inx).

Sincew > 3 > e,wehavelnw > Ilne = 1,s01—Inm < 0. Since 7™ = ™7 > (,
we have f'(;r) < 0. Thus, the graph y = f(x) has negative slope at x = 7.
|

Find the critical point of y = x*.

Solution We can’t differentiate x* by treating it as a power (like x%) because
the exponent varies. We can’t treat it as an exponential (like @*) because the base
varies. We can differentiate it if we first write it in terms of the exponential function,
x* = ¢*I"*_ and then use the Chain Rule and the Product Rule:
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1
@’_ — iexlnx — exlnx (lnx +x (_)) =xx(1 +1nx).
X

dx dx
Now x* is defined only for x > 0, and is itself never 0. (Why?) Therefore the
critical point occurs where 1 4 Inx = 0, thatis, Inx = —1,0orx = 1/e.
u

Finally, observe that (d/dx)a* = a” Ina is negative for all x if 0 < a < 1 and
is positive for all x if @ > 1. Thus, a* is one-to-one and has an inverse function,
log, x, provided @ > 0 and a # 1. Its properties follow in the same way as in
Section 3.2. If y = log, x, then x = a” and, differentiating implicitly with respect
to x, we get
dy dy
l=a¢"Ina— =xIna—.
@’ Ina - x Ina -~
Thus, the derivative of log, x is given by

—‘-i— log, x =

dx xlna’

Since log, x can be expressed in terms of logarithms to any other base, say e,

) _ Inx
C8a* =10

we normally use only natural logarithms. Exceptions are found in chemistry, acous-
tics, and other sciences where “logarithmic scales” are used to measure quantities
for which a one unit increase in the measure corresponds to a tenfold increase in
the quantity. Logarithms to base 10 are used in defining such scales. In com-
puter science, where powers of 2 play a central role, logarithms to base 2 are often
encountered.

Logarithmic Differentiation
Suppose we want to differentiate a function of the form

y=(fx)E®  (for f(x) > 0).

Since the variable appears in both the base and the exponent, neither the general
power rule, (d/dx)x® = ax~!, nor the exponential rule, (d/dx)a* = a* Ina, can
be directly applied. One method for finding the derivative of such a function is to
express it in the form

y = eEM M)

and then differentiate, using the Product Rule to handle the exponent. This is the
method used in Example 7.

The derivative in Example 7 can also be obtained by taking natural logarithms
of both sides of the equation y = x* and differentiating implicitly:

Iny=xInx

1d

Y =1nx+£=1+lnx

ydx X
dy
— =y(1+Inx)=x*{ +Inx).
dx

This latter technique is called logarithmic differentiation.
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S CIEKN Finddy/deify = (sin t)lm, where 0 < t < 7.

Solution We havelny = In¢ Insint. Thus

1dy 1 . cost
—— = — Insint +1nt——
y dt t sin ¢
dy lnsint_i_1 ¢ cott
— = nt co
dt Y

Insin ¢
= (sin)™’ (+ +Int cott) .

Logarithmic differentiation is also useful for finding the derivatives of functions
expressed as products and quotients of many factors. Taking logarithms reduces
these products and quotients to sums and differences. This usually makes the
calculation easier than it would be using the Product and Quotient Rules, especially
if the derivative is to be evaluated at a specific point. ’

3 ET RN Differentiate y = [(x + 1)(x + 2)(x + 3)]/(x + 4).
Solution In|yl=In|x+ 1|+ 1In|x + 2| +1n|x + 3| — In|x 4 4. Thus,

1, 1 1 1 1
;y=x+1+x+2+x+3_x+4
y,z(x+1)(x+2)(x+3)(1 n 1 n 1 B 1 )
x+4 x+1 x+4+2 x+3 x+4
0+ +3) | x+DE+3) G+ D +2)
- x+4 x+4 x+4
x4+ Dx+2)(x+3)
- (x +4)?

ifu=yx+DE2+DE3+1).

x=1

. du
eIl Find —
dx

Solution
1
Inu = E(m(x +1) +In(x2+ 1) +In(3 + 1))
ldu_l 1 n 2x n 3x2
udx 2\x+1 x241 x3+1
Atx:lwehaveu=«/§=2«/§. Hence,

=~f2<%+1+%)=3f2.

du

dx

x=1
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Simplify the expressions given in Exercises 1-10.

1. &/ 2. In(e!/2e2/%)

3, eSlnx 4. e(3]n9)/2

1 - 2Ilncosx sin x 2
5. In 6. e + (Ines™)
7. 31n4 —41n3 8. 4ln/x +61n(x'7?)

9. 2Inx + 5In(x — 2) 10. In(x* + 6x + 9)

Solve the equations in Exercises 11-14 for x.

11, 27t = 3% 12. 3 =9l
1 5 23 x
13. 7 = =3 14. 2 =4
Find the domains of the functions in Exercises 15-16.
15. In 5 ad 16. In(x? — x — 2)

Solve the inequalities in Exercises 17—-18.

17. In(2x —5) > In(7 — 2x) 18. ln(x2 ~2)<Inx

In Exercises 19-50, differentiate the given functions. If possible,
simplify your answers.

19. y =& 20. y=xe* —x
_ X _ 2x/2
21.y_67 22, y=x"¢"
23. y=In(Bx —2) 24, y =1In|3x — 2|
25. y = In(1 + %) 26. y=2Inv/x2+2
X —X
27. y= % 28. f(x) = ™D
29, y =9 30. x =¥ Int
P e — X

31. y= 32. =

Y71 +e* F e e¥ 4%
33. y=e¢"sinx 34. y=e"cosx
35. y=Inlnx 36. y=xlnx —x

; 2 2

37. y=x 1nx—7 38. y =In|sinx|
39. y = 52! 40. y = 207348
41. g(x) = *x' 2. h(t) =1 —x
43. f(s) =log,(bs +¢) 4. g(x) =log,(2x + 3)
45. y = 1V~ 46. y = (1/x)In*
47. y =1In|secx + tanx| 48. y=1In|x + v x2 — 2|

y = (cos x)* — x©¥

49. y = ln(\/x2 +a? - x) 50.

51. Find the nth derivative of f(x) = xe®*.

52, Show that the nth derivative of (ax? + bx + c)e” isa
function of the same form but with different constants.

53. Find the first four derivatives of e*.
54. Find the nth derivative of In(2x + 1).
55. Differentiate (a) f(x) = (x*)* and (b) g(x) = x*). Which

function grows more rapidly as x grows large?

Solve the equation x* = a, where @ > 0. The exponent
tower goes on forever.

* 56.

Use logarithmic differentiation to find the required derivatives in
Exercises 57-59.

57. f(x) =(x —1D(x—2)(x —3)(x — . Find f'(x).
JTF+x(1—x)173

58. F(x) = 1+ 5x)4/5 . Find F’(0).
= DEE - =3)
59. f(x) = I Find f'(2). Also find
F/(D.

2

60. At what points does the graph y = x e have a horizontal

tangent line?

61. Let f(x) = xe *. Determine where f is increasing and
where it is decreasing. Sketch the graph of f.

62. Find the equation of a straight line of slope 4 that is tangent
to the graph of y = Inx.

63. Find an equation of the straight line tangent to the curve
y = €* and passing through the origin.

64. Find an equation of the straight line tangent to the curve
y = Inx and passing through the origin.

65. Find an equation of the straight line that is tangent to y = 2*
and that passes through the point (1, 0).

66. For what values of a > 0 does the curve y = ¢~ intersect the
straight line y = x?
. 1
67. Find the slope of the curve ¢* In *_ x + — at (e, 1/e).
y y
68. Find an equation of the straight line tangent to the curve
xe? +y —2x = In2 at the point (1, In2).
69. Find the derivative of f(x) = Ax coslnx + Bxsinlnx. Use
the result to help you find the indefinite integrals

/cos In x dx and / sinlﬁx dx.
%70, Let F4 p(x) = Ae* cosx + Be® sinx. Show that
(d/dx)Fa,p(x) = Fayp p—a(x).

*71. Using the results of Exercise 70, find
(a) (d?/dx?)Fy p(x) and (b) (d3/dx3)e* cos x.

d
*72. Find e (Ae* cos bx + Be® sinbx) and use the answer to

x
help you evaluate
(a) / ™ cos bx dx and (b) f e sinbx dx.

73. Prove identity (ii) of Theorem 2 by examining the derivative
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74.

75.

* 76.

=TT,
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of the left side minus the right side as was done in the proof
of identity (i).

Deduce identity (iii) of Theorem 2 from identities (i) and
(ii).

Prove identity (iv) of Theorem 2 for rational exponents r by
the same method used for Exercise 73.

Let x > 0, and let F(x) be the area bounded by the curve

y = ¢2, the r-axis, and the vertical lines ¢ = 0 and ¢ = x.
Using the method of the proof of Theorem 1, show that
F'(x) = x2. Hence, find an explicit formula for F(x). What
is the area of the region bounded by y =%, y = 0,7 =0
and ¢t = 27

Carry out the following steps to show that 2 < e < 3. Let

f@®y=1/tfort > 0.

(a) Show that the area under y = f(t), above y = 0, and
between r = 1 and ¢ == 2 is less than 1 square unit.
Deduce that e > 2.

(b) Show that all tangent lines to the graph of f lie below
the graph. Hinz: f"(t) = 2/1° > 0.

(c) Find the lines 7, and 73 that are tangent to y = f(¢) at
t =2 and t = 3, respectively.

(d) Find the area A under T3, above y = 0, and between
t = 1 and ¢+ = 2. Also find the area A3 under 73, above
y =0, and between ¢t =2 and ¢ = 3.

(e) Show that Ay + A3 > 1 square unit. Deduce that ¢ < 3.

y

In this section we will study the use of exponential functions to model the growth

/

Figure 3.14

1,0 x

rates of quantities whose rate of growth is directly related to their size. The growth
of such quantities is typically governed by differential equations whose solutions
involve exponential functions. Before delving into this topic, we prepare the way
by examining the growth behaviour of exponential and logarithmic functions.

The Growth of Exponentials and Logarithms

In Section 3.3 we showed that both ¢* and Inx grow large (approach infinity) as x
grows large. However, ¢* increases very rapidly as x increases, and Inx increases
very slowly. In fact, ¢* increases, for large x, faster than any positive power of x

(no matter how large the power), while In x increases more slowly than any positive
power of x (no matter how small the power). In order to verify this behaviour we
start with an inequality satisfied by Inx. The straight line y = x — 1 is tangent to
the curve y = Inx at the point (1, 0). The following theorem asserts that the curve

Inx <x—1forx >0

wen @

Ifx >0,thenlnx <x —1.

lies below that line. (See Figure 3.14.)

PROOF letg(x)=Inx — (x — 1) forx > 0. Then g(1) = 0 and

, 1
gx)=—-—1
X

if0<x <1
ifx > 1.

As observed in Section 2.6, these inequalities imply that g is increasing on ]0, 1]
and decreasing on ]1, oo[. Thus, g(x) < g(1) =0forallx > OandInx < x — 1

for all such x.

If a > 0, then

&

The growth properties of exp and In
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coooxf - Inx ~0
(a) xlggogg=0, (b) lim =0
(© lim x|°e* =0, Ad) - lim x%lnx = 0.
b ¢ e .52 K=+ 0

Each of these limits makes a statement about who “wins” in a contest between an
exponential or logarithm and a power. For example, in part (a), the denominator e*
grows large as x — 00, so it tries to make the fraction x“/e* approach 0. On the
other hand, if a is a large positive number, the numerator x¢ also grows large and
tries to make the fraction approach infinity. The assertion of (a) is that in this contest
between the exponential and the power, the exponential is stronger and wins; the
fraction approaches 0. The content of Theorem 5 can be paraphrased as follows:

In a struggle between a power and an exponential, the exponential wins.
In a struggle between a power and a logarithm, the power wins.

PROOF First we prove part (b). Letx > 1,a > 0, and let s = a/2. Since
In(x*) = 5 Inx, we have, using Theorem 4,

O<slnx =In(x*) <x*—1<x*

1
Thus, 0 < Inx < — x* and, dividing by x® = x%,
s

Inx 1 x* 1
0< <——2= .
x4 s xS s x5

Now 1/(sx*) — 0 as x — oo (since s > 0); therefore by the Squeeze Theorem,

. Inx
lim =0.
x—oo x9

Next we deduce part (d) from part (b) by substituting x = 1/z. As x — 04, we
have t — o0, so )

—1
lim x4Inx = Lim 20 _ oIt oo
x—0+ t—00 19 t—oo  t4

Now we deduce (a) from (b). If x = In¢, then t — o0 as x — 00, so

a In )¢ 1 “
lim % = Jim 420 =t1im<nt) —0°=0.
— 00

x—o00 eX t—>00 t tl/a

Finally, (c) follows from (a) via the substitution x = —t:
t[l
lim |x|¢" = lim | —¢|%¢™" = lim — = 0.
X—>—00 =00 t—oo ¢!
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y k>0
Yo k=0
k<0

Figure 3.15 Solutions of the
initial-value problem dy/dt = ky,
y(0) = yg,fork > 0,k =0,and k <0

Exponential Growth and Decay Models

Many natural processes involve quantities that increase or decrease at a rate pro-
portional to their size. For example, the mass of a culture of bacteria growing in a
medium supplying adequate nourishment will increase at a rate proportional to that
mass. The value of an investment bearing interest that is continuously compounding
increases at a rate proportional to that value. The mass of undecayed radioactive
material in a sample decreases at a rate proportional to that mass.

All of these phenomena, and others exhibiting similar behaviour, can be mod-
elled mathematically in the same way. If y = y(¢) denotes the value of a quantity
y at time ¢, and if y changes at a rate proportional to its size, then

dy

=¥y,
a7

where k is the constant of proportionality. The above equation is called the dif-
ferential equation of exponential growth or decay because, for any value of the
constant C, the function y = Ce* satisfies the equation. In fact, if y(¢) is any
solution of the differential equation y’ = ky, then

d (y(t)) _€Y() —ke?y () _ Y0 —ky@)

7 \ T o =0 forallzt.

Thus y(t)/ek’ = C, aconstant, and y(¢) = Ce*. Since y(0) = Ce® = C,

dy
ok
The initial-value problem 1 dt ¥ has unique solution y = ype*.
(@) =yo

If yo > 0, then y(¢) is an increasing function of ¢ if k > 0 and a decreasing function
of ¢ if k < 0. We say that the quantity y exhibits exponential growth if £ > 0 and
exponential decay if £ < 0. (See Figure 3.15.)

IEZTRN  (Growth of a cell culture) A certain cell culture grows at a rate
proportional to the number of cells present. If the culture contains 500 cells initially
and 800 after 24 h, how many cells will be present after a further 12 h?

Solution Let y(¢) be the number of cells present ¢ hours after there were 500
cells. Thus y(0) = 500 and y(24) = 800. Because dy/dt = ky, we have

y() = y(0)ek = 500¢"".

Therefore, 800 = y(24) = 500¢>*, and so 24k = In % = In(1.6). It follows that
k = (1/24)In(1.6) and

(1) = 500e"/2P09 = 500(1.6)"/*.

We want to know y when t = 36: y(36) = 500¢3¢/29In(1.6) — 500(1.6)3/2 ~ 1012.
The cell count grew to about 1,012 in the 12 h after it was 800.

Exponential growth is characterized by a fixed doubling time. If 7 is the time
at which y has doubled from its size at t = 0, then 2y(0) = ¥(T) = y(0)e*T.
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Therefore e*” = 2. Since y(¢) = y(0)e**, we have
Yt +T) = y(@e D = Ty =2y ().

that is, 7 units of time are required for y to double from any value. Similarly,
exponential decay involves a fixed halving time (usually called the half-life). If
y(T) = y(0), then &*7 = } and

1
y(t+T) =y = 5y

XN (Radioactive decay) A radioactive material has a half-life of 1,200
years. What percentage of the original radioactivity of a sample is left after 10 years?
How many years are required to reduce the radioactivity by 10%?

Solution Let p(t) be the percentage of the original radioactivity left after ¢ years.
Thus p(0) = 100 and p(1,200) = 50. Since the radioactivity decreases at a rate
proportional to itself, dp/dt = kp and

p(t) = 100"
Now 50 = p(1,200) = 100e'20% 5o

1 ! 50 In2

k= — In— = .
1,200 2100~ 1,200

The percentage left after 10 years is
p(10) = 100e'% = 100e~100n2/1.20 ~;, 99 424.

If after ¢ years 90% of the radioactivity is left, then

90 = 100",
0
kt =1In 9—,
100
1 1,200
t=-1n0.9) = — In(0.9) ~ 182.4,
k In2

so it will take a little over 182 years to reduce the radioactivity by 10%.

Sometimes an exponential growth or decay problem will involve a quantity that
changes at a rate proportional to the difference between itself and a fixed value:

dy

— =k(y —a).

R (y—a)
In this case the change of dependent variable u(t) = y(¢t) — a should be used to
convert the differential equation to the standard form. Observe that u(¢) changes at
the same rate as y(¢) (i.e., du/dt = dy/dt), so it satisfies

du
— =ku.
dt "
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IS EN (Newton’s law of cooling) A hot object introduced into a cooler

environment will cool at a rate proportional to the excess of its temperature above
that of its environment. If a cup of coffee sitting in a room maintained at a
temperature of 20°C cools from 80°C to 50°C in five minutes, how much longer
will it take to cool to 40°C?

Solution Let y(r) be the temperature of the coffee r min after it was 80°C. Thus
y(0) = 80 and y(5) = 50. Newton’s law says that dy/dt = k(y — 20) in this case,
so let u(t) = y(¢t) — 20. Thus, u(0) = 60 and u(5) = 30. We have

du dy

— = =2 =k(y —20) = ku.

dt dt S ) "
Thus

u(t) = 60,

30 = u(5) = 60e>*,
Sk=In}=—In2.

‘We want to know ¢ such that y(z) = 40, that is, u(t) = 20:
20 = u(t) = 60e~ /D2
t 20
——In2=In—=—-In3,
) R

t = 5@ ~ 7.92.
In2

The coffee will take about 7.92 — 5 = 2.92 min to cool from 50°C to 40°C.

Interest on Investments

Suppose that $10,000 is invested at an annual rate of interest of 8%. Thus the
value of the investment at the end of 1 year will be $10,000(1.08) = $10,800. If
this amount remains invested for a second year at the same rate it will grow to
$10,000(1.08) = $11,664; in general, n years after the original investment was
made, it will be worth $10,000(1.08)".

Now suppose that the 8% rate is compounded semiannually so that the interest
is actually paid at a rate of 4% per 6-month period. After 1 year (2 interest periods)
the $10,000 will grow to $10,000(1.04)% = $10,816. This is $16 more than was
obtained when the 8% was compounded only once per year. The extra $16 is
the interest paid in the second 6-month period on the $400 interest earned in the
first 6-month period. Continuing in this way, if the 8% interest is compounded
monthly (12 periods per year and %% paid per period) or daily (365 periods per

year and §§—5% paid per period), then the original $10,000 would grow in 1 year
12 , 365

to $10,000(1+ %) = $10,830 or $10,000(1 + i) = $10,832.78,

respectively.

For any given nominal interest rate, the investment grows more if the com-
pounding period is shorter. In general, an original investment of $A invested at » %
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per annum compounded » times per year grows in one year to

sa(1+——)".

100n

It is natural to ask how well we can do with our investment if we let the number of
periods in a year approach infinity, that is, we compound the interest continuously.

The answer is thatin 1 ye

(1+

For example, at 8% per an

$4 lim

n—=>00

r
100~

1 year to $10,000¢%%8 ~ §
we get compounding daily

For every real number x,

ot g (1+§)n

(il 0,9

PROOF 1If x = 0, there
x#0,leth=x/n. Asn

(1+ ;—C)"

lim In
n—oo

Since In is differentiable,

in(tim, (14 7))

Since the exponential fun

(43 =

lim
n—>0C

lim
n—>oC

y

x lim

x I

x<"

X —

ar the $A will grow to
— $Aer/100.

num compounded continuousty, our $10,000 will grow in
510, 832.87. (Note that this is just a few cents more than
v.) To justify this result we need the following theorem.

is nothing to prove; both sides of the identity are 1. If
tends to infinity, # approaches 0. Thus,

(1+%)
ln(1+$) % o
X

n
In(1 + k)
h
In(1+h4)—1Inl
m ————— e

.

X.

lim nln
—>

lim x
—0oC

Jim (where h = x/n)

lim (since In1 = 0)

— In¢

(by the definition of derivative)

dt 1

1

t

t=1

it is continuous. Hence, by Theorem 7 of Section 1.4,

(1+ %)n =X.

ction is the inverse of the natural logarithm, we conclude

= lim In
n—>o0

In the case x = 1 the formula given in Theorem 6 takes the following form:

e = lim
n—oo

o2y
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We can use this formula to compute approximations to e, as shown in Table 2. In

Table 2. a sense we have cheated in obtaining the numbers 1n this table; they were produced
" < 14 l)" using the y* function on a scientific calculator. However, this function is actually
n computed as ey p any event, the formula in this table is not a very efficient
1 > way to calculate e to any great accuracy. Only 4 decimal places are correct for
10 2.59374. . . n = 100,000. A much better way is to use the series
100 2.70481 - -- 1 1 1 1 1 1 1
1,000 2.71692--- e=l4—4 -+ —F—Fro=1dldt ot — e,
10,000  2.71815- - o2t 3841 2 6 24

100,000 2.71827--- which we will establish in Section 4.8.

A final word about interest rates. Financial institutions sometimes quote effec-
tive rates of interest rather than nominal rates. The effective rate tells you what the
actual effect of the interest rate will be after one year. Thus, $10,000 invested at
an effective rate of 8% will grow to $10,800.00 in one year regardless of the com-
pounding period. A nominal rate of 8% per annum compounded daily is equivalent
to an effective rate of about 8.3278%.

Logistic Growth

Few quantities in nature can sustain exponential growth over extended periods of
time; the growth is usually limited by external constraints. For example, suppose
a small number of rabbits (of both sexes) is introduced to a small island where
there were no rabbits previously, and where there are no predators who eat rabbits.
By virtue of natural fertility, the number of rabbits might be expected to grow
exponentially, but this growth will eventually be limited by the food supply available
to the rabbits. Suppose the island can grow enough food to supply a population of
L rabbits indefinitely. If there are y(¢) rabbits in the population at time ¢, we would
expect y(t) to grow at a rate proportional to y(t) provided y(¢) is quite small (much
less than L). But as the numbers increase, it will be harder for the rabbits to find
enough food, and we would expect the rate of increase to approach 0 as y(r) gets
closer and closer to L. One possible model for such behaviour is the differential
equation

2-(-3)

which is called the logistic equation since it models growth that is limited by the
supply of necessary resources. Observe that dy/dt > 0if 0 < y < L and that
this rate is small if y is small (there are few rabbits to reproduce) or if y is close to
L (there are almost as many rabbits as the available resources can feed). Observe
also that dy/dt < 0 if y > L; there being more animals than the resources can
feed, the rabbits die at a greater rate than they are born. Of course, the steady-state
populations y = 0 and y = L are solutions of the logistic equation; for both of
these dy/dt = 0. We will examine techniques for solving differential equations
like the logistic equation in Section 7.9. For now, we invite the reader to verify by
differentiation that the solution satisfying y(0) = yp, is

e Ly[)
Yo+ (L —yo)e "

y
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—

Some logistic curves

~

Observe that, as expected, if 0 < yp < L, then

lim y(¢) =L,
t—> 0

lim y() = 0.
t—>—00

The solution given above also holds for yo > L. However, the solution does not
approach 0 as ¢ approaches —oo in this case. It has a vertical asymptote at a certain
negative value of z. (See Exercise 28 below.) The graphs of solutions of the logistic
equation for various positive values of y, are given in Figure 3.16.

|Exercises 34

Evaluate the limits in Exercises 1-8.

1.

10.

fx—oo €+ 5

lim x3e~* 2. lim x 3¢
X—>00 X—=>00

. 23 . ox—2e*

lim 4. lim

. . Inx
lim xlnx 6. lim —
x—>0+ x—=>0+ X
. 2 . In x)3
. lim x(ln |x|) 8. lim (n-x)
x—0 X—00 X
. (Bacterial growth) Bacteria grow in a certain culture at a

rate proportional to the amount present. If there are 100
bacteria present initially and the amount doubles in 1 h, how
many will there be after a further 1 % h?

(Dissolving sugar) Sugar dissolves in water at a rate
proportional to the amount still undissolved. If there were
50 kg of sugar present initially, and at the end of 5 h only 20
kg s left, how much longer will it take until 90% of the
sugar is disssolved?

—
=)

. (Radioactive decay) A radioactive substance decays at a

rate proportional to the amount present. If 30% of such a
substance decays in 15 years, what is the half-life of the
substance?

. (Half-life of radium) If the half-life of radium is 1,690

years, what percentage of the amount present now will be
remaining after (a) 100 years, (b) 1,000 years?

. Find the half-life of a radioactive substance if after 1 year

99.57% of an initial amount still remains.

. (Bacterial growth) In a certain culture where the rate of

growth of bacteria is proportional to the number present, the
number triples in 3 days. If at the end of 7 days there are 10
million bacteria present in the culture, how many were
present initially?

. (Weight of a newborn) In the first few weeks after birth, a

baby gains weight at a rate proportional to its weight. A
baby weighing 4 kg at birth weighs 4.4 kg after 2 weeks.
How much did the baby weigh 5 days after birth?

. (Electric current) When a simple electrical circuit

containing inductance and resistance but no capacitance has
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17.

18.

19.

x 20,
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the electromotive force removed, the rate of decrease of the
current is proportional to the current. If the current is I (r)
amperes ¢ s after cutoff, and if I = 40 when ¢t = 0, and

I =15 when ¢t = 0.01, find a formula for /().

(Continuously compounding interest) How much money
needs to be invested today at a nominal rate of 4%
compounded continuously, in order that it should grow to
$10,000 in 7 years?

(Continuously compounding interest) Money invested at
compound interest (with instantaneous compounding)
accumulates at a rate proportional to the amount present. If
an initial investment of $1,000 grows to $1,500 in exactly 5
years, find (a) the doubling time for the investment and (b)
the effective annual rate of interest being paid.

(Purchasing power) If the purchasing power of the dollar is
decreasing at an effective rate of 9% annually, how long will
it take for the purchasing power to be reduced to 25 cents?

(Effective interest rate) A bank claims to pay interest at an
effective rate of 9.5% on an investment account. If the
interest is actually being compounded monthly, what is the
nominal rate of interest being paid on the account?

Differential equations of the form y’' = a + by

21.

22.

Suppose that f (x) satisfies the differential equation
') =a+bf),

where a and b are constants.

(a) Solve the differential equation by substituting
u(x) = a + bf (x) and solving the simpler differential
equation that results for u(x).

(b) Solve the initial-value problem:

dy

A b
I a—+ by
y(0) = yo

(Drug concentrations in the blood) A drug is introduced
into the bloodstream intravenously at a constant rate and
breaks down and is eliminated from the body at a rate
proportional to its concentration in the blood. The
concentration x(t) of the drug in the blood satisfies the
differential equation

d
d—j:a—bx,

where a and b are positive constants.

(a) What is the limiting concentration limy_, o x(¢) of the
drug in the blood?

23.

24.

25.

(b) Find the concentration of the drug in the blood at time ¢,
given that the concentration was zero at t = 0.

(c) How long after r = 0 will it take for the concentration to
rise to half its limiting value?

(Cooling) Use Newton’s law of cooling to determine the
reading on a thermometer 5 min after it is taken from an
oven at 72°C to the outdoors where the temperature is 20°C,
if the reading dropped to 48°C after one min.

(Cooling) An object is placed in a freezer maintained at a
temperature of —5°C. If the object cools from 45°C to 20°C
in 40 min, how many more minutes will it take to cool to
0°C?

(Warming) If an object in a room warms up from 5°C to
10°C in 4 min, and if the room is being maintained at 20°C,
how much longer will the object take to warm up to 15°C?
Assume the object warms at a rate proportional to the
difference between its temperature and room temperature.

The logistic equation

* 26.

* 27,

* 28,

* 29,

30.

31.

Suppose the quantity y(¢) exhibits logistic growth. If the
values of y(r) attimes ¢ == 0, ¢ = 1, and t = 2 are yy, yi,
and y, respectively, find an equation satisfied by the
limiting value L of y(¢), and solve it for L. If yg = 3,

y1 =5,and y, = 6, find L.

Show that a solution y(¢) of the logistic equation having
0 < y(0) < L is increasing most rapidly when its value is
L/2. (Hint: you do not need to use the formula for the
solution to see this.)

If yo > L, find the interval on which the given solution of
the logistic equation is valid. What happens to the solution
as t approaches the left endpoint of this interval?

If yo < 0, find the interval on which the given solution of the
logistic equation is valid. What happens to the solution as ¢
approaches the right endpoint of this interval?

(Modelling an epidemic) The number y of persons infected
by a highly contagious virus is modelled by a logistic curve

L

YT MR

where ¢ is measured in months from the time the outbreak
was discovered. At that time there were 200 infected
persons, and the number grew to 1,000 after 1 month.
Eventually, the number levelled out at 10,000. Find the
values of the parameters £, M, and k of the model.

Continuing the previous exercise, how many people were
infected 3 months after the outbreak was discovered, and
how fast was the number growing at that time?
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Figure 3.17 The graph of Sinx

forms part of the graph of sinx

ITION n

Y (1,7/2)

y =sin"lx

(=1, —m/2)

Figure 3.18 The arcsine function

The six trigonometric functions are periodic and, hence, not one-to-one. However,
as we did with the function x2 in Section 3.1, we can restrict their domains in such
a way that the restricted functions are one-to-one and invertible.

The Inverse Sine (or Arcsine) Function

Let us define a function Sin x (note the capital letter) to be sin x, restricted so that

its domain is the interval -3 <x < 3:

The restricted function Sin x
if—flsxsz:
2

Sinx = sinx 2

Since its derivative cos x is positive on the interval ]—%, %[, the function Sin x is

increasing on its domain, so it is a one-to-one function. It has domain [— %, %] and

range [—1, 1]. (See Figure 3.17.)
y
...... . S
~~“ ! ~~“~ .
s | . y=sinx
RN —m/2 I .
'/ X |
.. | \ n/2 .. x
SN : y = Sinx '\\
] A N

Being one-to-one, Sin has an inverse function which is denoted sin~! (or, in some
books and computer programs, by arcsin, Arcsin, or asin) and which is called the
inverse sine or arcsine function.

The inverse sine function sin~!z or arcsin z

y=sin"lx < x=Siny

<= x=siny and — —-<y<

(SR
[ ]

The graph of sin~! is shown in Figure 3.18; it is the reflection of the graph of Sin in
the line y = x. The domain of sin~! is [—1, 1] (the range of Sin), and the range of
sin~! is [—%, Z] (the domain of Sin). The cancellation identities for Sin and sin~

are

sin~!(Sinx) = arcsin (Sinx) = x

Sin (sin"! x) = Sin (arcsinx) = x

Remark As for the general inverse function ™!, be aware that sin~! x does not
represent the reciprocal 1/ sinx. (We already have a perfectly good name for the
reciprocal of sinx; we call it cscx.) We should think of sin~! x as “the angle
between — 5 and 7 whose sine is x.”
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11 _ 7 T _ ] T_1_1=x

(a) sin™' 5 =% (becausesinf = jand —§ < 2 < 7).

(b) sin™! (—\/%) = —Z (because sin (—Z) = —7% and—% < -2 < 7).

(c) sin~}(—1) = —% (because sin (—%) = —1).

(d) sin~!2 is not defined. (2 is not in the range of sine.)

n
IR Find (a) sin (sin ™' 0.7), (b) sin™! (sin0.3), () sin~! (sin %),

(d) cos (sin™! 0.6).

Solution

(a) sin (sin™"0.7) = 0.7 (cancellation identity).

(b) sin~! (sin0.3) = 0.3 (cancellation identity).

(c) The number 4?” does not lie in [—%, %] so we can’t apply the cancellation
identity directly. However, sin 4?” = sin (n — %) = sin T by the supple-
mentary angle identity. Therefore, sin™! (sin %) = sin~! (sin%) = % (by
cancellation).

1

0.6 (d) Let & = sin~! 0.6, as shown in the right triangle in Figure 3.19, which has
hypotenuse 1 and side opposite 6§ equal to 0.6. By the Pythagorean Theorem,
f the side adjacent 6 is /1 — (0.6)> = 0.8. Thus cos (sin~! 0.6) = cos# = 0.8.
||

0.8

Fi 3.19 . . . .
gre IEZTEN  simplify the expression tan(sin ™! x).

Solution We want the tangent of an angle whose sine is x. Suppose first that

0 < x < 1. As in Example 2, we draw a right triangle (Figure 3.20) with one angle

6, and label the sides so that § = sin~! x. The side opposite # is x, and hypotenuse

1. The remaining side is +/1 — x2, and we have
tan(sin‘1 x) =tanf = _r

| V1 —=x2
* Because both sides of the above equation are odd functions of x, the same result
holds for —1 < x < 0.
[2] |
A1 —x? Now let us use implicit differentiation to find the derivative of the inverse sine
p
Figure 3.20 function. If y = sin~!x, then x = siny and —% <y < 3. Differentiating with

respect to x, we obtain
dy
1 =(cosy)—.
(cos y) I

Since —% <y< % we know that cos y > 0. Therefore,

cosy =+/1—siny = v1 — x2,

anddy/dx =1/cosy = 1/4/1 — x2.
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e
QI X mm = QTCSIN X =2

dx dx JT= x2
Note that the inverse sine function is differentiable only on the open interval

1—1, 1; the slope of its graph approaches infinity as x — —14- or as
x — 1—. (See Figure 3.18.)

dx
L Find the derivative of sin~! (£> and hence evaluate / —_—,
a

22 — x2
where a > 0.
Solution By the Chain Rule,
d . _|x 1 1 1 1 1 " 0
— sin —_ = —_ = — = a > v,
dx a ¥ a 2 —xla /a2 — x2
1= a? a?
Hence,
[——L——dx—sin“li-k(? {a >0
R a )
]

m Find the solution y of the following initial-value problem:

y/___——ziﬂ (=2 <x </2)
y(1) = 2m.

Solution Using the integral from the previous example, we have

4 x
= | ——dx =4sin™! (—) +C
Y /x/Z—x2 V2

for some constant C. Also 27 = y(1) = 4sin"!(1/+/2)+C =4 (Z)+C =n +C.
Thus, C =7 and y = 4sin~!(x/~/2) + 7.

(A sawtooth curve) Let f(x) = sin~! (sin x) for all real x.
(a) Calculate and simplify f'(x).

(b) Where is f differentiable? Where is f continuous?

(c) Use your results from (a) and (b) to sketch the graph of f.

Solution (a) Using the Chain Rule and the Pythagorean identity we calculate

1
f(x) = ————(cosx)
1 — (sinx)?
_ _tosx _ cosx _[1 ifcosx >0
~cos? x | cos x| —1 ifcosx <O.
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Figure 3.21 A sawtooth graph

Figure 3.22
(a) The graph of Tanx
(b) The graph of tan™!x

(b) f is differentiable at all points where cosx ## 0, that is, everywhere except at
odd multiples of /2, namely, +5, +3, +3, ...
Since sin is continuous everywhere and has values in [—1, 1], and since sin™
is continuous on [—1, 1], therefore f is continuous on the whole real line.

!

(c) Since f is continuous, its graph has no breaks. The graph consists of straight
line segments of slopes alternating between 1 and —1 on intervals between
consecutive odd multiples of /2. Since f’(x) = 1 on the interval [—% %]
(where cos x > 0), the graph must be as shown in Figure 3.21.

|

[T E R

-——— y = sin~!(sinx)

[
[SIE]

/.

g - — =

/

[STE

The Inverse Tangent (or Arctangent) Function

The inverse tangent function is defined in a manner similar to the inverse sine. We
begin by restricting tangent to an interval where it i$ one-to-one; in this case we use
the open interval |—%, Z[. See Figure 3.22(a).

The restricted function Tan x

. b4 T
Tanx = tanx if —— <x < —.
2 2
.l Yy )
i 1 y
H 1
H |
HE |
vl 1
I 1
I 1
1
: | % ________________
1 «
! K:kszanx,'
S =t 1
-3 E y=tanlx
il 1 —
| : ; ;
I I
I
E ; J— i
[} | *7
1 I
| [
1 I:
X :::y:tanx
I I
I
| i
(2) (b)

The inverse of the function Tan is called the inverse tangent function and is denoted

tan~! (or arctan, Arctan, or atan). The domain of tan~! is the whole real line (the

range of Tan). Its range is the open interval ]— z f[
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The inverse tangent function tan~'x or arctan x

y=tan'x <<= x=Tany
b4 b4
& x=tany and ——§<y<5

The graph of tan~! is shown in Figure 3.22(b); it is the reflection of the graph of
Tan in the line y = x.

The cancellation identities for Tan and tan—! are

tan"!(Tanx) = arctan (Tanx) = x  for — -725 <x < %

Tan(tan™' x) = Tan(arctanx) = x  for — 00 < x < 00O

3
Evaluate: (a) tan(tan—!3), (b)tan ! <tan %),
and (c)cos(tan™!2).

Solution
(a) tan(tan~! 3) = 3 by cancellation.

(b) tan™! (tan %) = tan~!(—1) = —Z.

(c) cos(tan~!2) = cosd = % via the triangle in Figure 3.23. Alternatively, we
havetan(tan~! 2) = 2, sosec?(tan~! 2) = 1422 = 5. Thuscos?(tan"! 2) = 1.
Since cosine is positive on the range of tan~!, we have cos(tan~!2) = L.

Vs
|

Figure 3.23

The derivative of the inverse tangent function is also found by implicit differentia-
tion: if y = tan~! x, then x = tan y and

dy dy dy
1= 2 — =11 t 2 - =1 2 —_—
(sec”y) == = (L+tan"y)—= = ( +x5) -

Thus

d 1
ISETTIER Find —tan™! (i) and hence evalhate | ——— dx.
dx a x2+a?

Solution We have
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hence

at+x? .a

dx ltan”l (.x

—1
CuL Lkl Prove that tan™! L Y —tantx—Zforx > —1.
x+1 4

-1
Solution Let f(x) = tan™! (X_—H> —tan~! x. On the interval ]—1, oo[ we
x

have, by the Chain Rule and the Quotient Rule,

I G+h-@-D 1

x—1\2 (x +1)2 1+x2
1+( )

flx)=

x+1
(x + 1)2 2 1
T2t D+ 24 D) R+ 12 T+ ax2
2 1
=2+2x2— 1+x2=

Hence, f(x) = C (constant) on that interval. We can find C by finding f(0):
-1 -1 T
C = f(0)=tan "(—1) —tan OZ—Z

Hence, the given identity holds on ]—1, oof.

y Remark Some computer programs, especially spreadsheets, implement two ver-
sions of the arctangent function, usually called “atan” and “atan2.” The function
1, y0) atan is just the function tan~! that we have defined; atan(y/x) gives the angle in
radians, between the line from the origin to the point (x, y) and the positive x-axis,
provided (x, y) lies in quadrants I or IV of the plane. The function atan2 is a
function of two variables: atan2(x, y) gives that angle for any point (x, y) not on
the y-axis. See Figure 3:24. Some programs, for instance Matlab, reverse the order
of the variables x and y in their atan2 function. Maple uses arctan (x) and
arctan (y, x) for the one- and two-variable versions of arctangent.

o

=y

(2. 2) b

Other Inverse Trigonometric Functions

The function cos x is one-to-one on the interval [0, 7], so we could define the
inverse cosine function, cos™! x (or arccos x, or Arccos x, or acos x), so that

Figure3.24 6, = tan~!(y1/x1)
= atan(y1/x1) y=cos"'!x <= x=cosy and 0<y<m.

= atan2(xy, y1) However, cos y = sin (% - y) (the complementary angle identity), and 5 — y is in

0 = atan2(x2, y2) the interval [—%, %] when 0 < y < 7. Thus, the definition above would lead to

T , n T
y=cos"'x <<= x=sin <§ - y) & sinlx = Sy = 5—cos’lx.

It is easier to use this result to define cos ' x directly:



Figure 3.25
and sec™!

The graphs of cos™!
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1

The inverse cosine function cos™ x or arccos x

4 [
cos_lng——smlx for —1<x<l1.

The cancellation identities for cos™

Ix are

cos !(cos x) = arccos (cos x) = x forO0<x<m

cos(cos™! x) = cos(arccosx) = x for —1<x<1

The derivative of cos™! x is the negative of that of sin~! x (why?):

d 1
—cos Tl x =~

dx JI—x2

The graph of cos™ is shown in Figure 3.25(a).

(~1,m) Y T

(=1, m)

[SIE]

y =cos lx

—q
-

(a) (b)

Scientific calculators usually implement only the primary trigonometric functions—

sine, cosine, and tangent—and the inverses of these three. The secondary functions—
secant, cosecant, and cotangent—are calculated using the reciprocal key; to calcu-

late sec x you calculate cos x and take the reciprocal of the answer. The inverses of

the secondary trigonometric functions are also easily expressed in terms of those of

their reciprocal functions. For example, we define:

The inverse secant function sec™ !z (or arcsec )

-1 a1
sec” x = cos — for |x| > 1.
X.

The domain of sec™! is the union of intervals ]—oo, —1] U [1, oo}, and its range is

[0,2[U]%. 7] The graph of y = sec™'x is shown in Figure 3.25(b). It is the
reflection in the line y = x of that part of the graph of sec x for x between 0 and 7.
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Some authors prefer to define
sec™! as the inverse of the
restriction of sec x to the
separated intervals [0, 7/2[ and
[, 37 /2[ because this prevents
the absolute value from
appearing in the formula for the
derivative. However, it is much
harder to calculate values with
that definition. Our definition
makes it easy to obtain a value
such as sec ™! (=3) froma
calculator. Scientific calculators
usually have just the inverses of

sine, cosine, and tangent built in.

|Exercises 3.5

Observe that

sec(sec”! x) = sec (cos_1 (%))

1

= = =X

=)

-1 -1 1
sec” (secx) = cos

—_

for |x| > 1,

SeC x

= cos_l(cosx) =x forx in [0, 7], x # %

We calculate the derivative of sec™! from that of cos™!:
d . d a1 -1 1
—sec  x = — cos - ==
dx dx x ) 1 x2

1 | x? T x| 1

TRV -1 T 2ol el

Note that we had to use +/x2 = |x| in the last line. There are negative values of x
in the domain of sec™'. Observe in Figure 3.25(b) that the slope of y = sec™!(x) is
always positive.

o 1
sec™!

— X =
dx [x|/x2 — 1

The corresponding integration formula takes different forms on intervals where
x>1lorx < —1:

1
-1

{ sec™ x4+ C ' onintervals where x

>
—gec™lx + C . on intervals where x <

1
——— x
/ xa/x%2 -1

Finally, note that csc™! and cot™! are defined similarly to sec™!. They are seldom
encountered.

The inverse cosecant and inverse cotangent functions

-1 (] -1 (]
csC™' x = sin -], (x|=1) cot™ x = tan -], x#0)
x X

In Exercises 1-12, evaluate the given expression.
2. cos ! (_71)
4. sec”! V2

_1£
2

1. sin

3. tan_l(—l)

5. sin(sin_10.7) 6. cos(sin™! 0.7)

7. tan~! (tan ZT”) 8. sin~!(cos 40°)



9, cos~!(sin(—0.2))

11. cos (tan_l %)

13. sin(cos™! %)

15. cos(tan_1 x)

1

17. tan(cos™ " x)

10.

sin (cos_1 ('Tl))

12. tan(tan™! 200)

In Exercises 13—18, simplify the given expression.

14

. cos(sin_1 Xx)

16. sin(tan_1 x)

18. tan(sec_1 x)

In Exercises 19-32, differentiate the given function and simplify

the answer whenever possible.

19. y =sin

(*)

1

21.

23. f(t)=ttan" ¢
25. Fx)y=(1 —i—)cz)tan_1 X
27. G(x) = ﬂ
sin—! 2x
29. f(x) = (sin” ! x%)!/2

31.

32. y= acos”! (1

a
33.

(1,2).
34.
y = sin™!
35.

1

36. The derivative of sec™

on its domain? Why?
37.

x
y=+va?—x2+asin”!

a

x —

)

20. y= tanfl(ax + b)
22, f(x) =xsin"'x
24, u=7%sec '(1+2?)
.. 1@
26. y =sin” ' —
X
sin~!
28. H(t) = —
sint
30. y= cos™! e
Vva?+x?
(a >0)

2
Find the slope of the curve tan™! (_x) =
y

1

(a>0)

X .
— at the point
y

Find equations of two straight lines tangent to the graph of
x and having slope 2.

Show that, on their respective domains, sin~! and tan™! are
increasing functions and cos™

is a decreasing function.

x is positive for every x in the
domain of sec™!. Does this imply that sec

~1 is increasing

Sketch the graph of csc ™! x and find its derivative.
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38.
39.

Sketch the graph of cot™! x and find its derivative.

Show that tan ™! x 4+ cot ! x = 5 for x > 0. What is the
sum if x < 0?

Find the derivative of g(x) = tan(tan! x) and sketch the
graph of g.

40.

In Exercises 41-44, plot the graphs of the given functions by first
calculating and simplifying the derivative of the function. Where
is each function continuous? Where is it differentiable?

#41. cos~(cosx) # 42, sin~! (cos x)

#43. tan~!(tanx) * 44, tan~!(cotx)

45. Show that sin~! x = tan~! _r if jx] < 1.
1—-x2
71 2 _ .
46. Show that sec™! x = {‘an x -1 ifx=1
a7 —tan ty/x2—1 ifx <—1
47. Show that tan™! x = sin™! _r for all x.
V14 x2
2.1
sinm! YT ifx>1
48. Show thatsec™1x = X
x2 -1
7 —sin! X jfx<-—1
x
* 49, Show that the function f(x) of Example 9 is also constant

on the interval J—oo, —1[. Find the value of the constant.
Hint: find limy_, _oo f(x).

Find the derivative of f(x) = x — tan™ (tan x). What does
your answer imply about f(x)? Calculate f(0) and f ().
Is there a contradiction here?

= 50.

51, Find the derivative of f(x) = x — sin~!(sinx) for

—n < x < 7 and sketch the graph of f on that interval.

In Exercises 5255, solve the initial-value problems.

yo gL
¢ 52, 1+x2 ¢ 53. 9 + x2
y(0) =1 y(3)=12
’ 1 ! 4
Y= —— y=——
& 54. V1—x2 © 55, V25 — x2
y(1/2) =1

y(0) =0

Any function defined on the real line can be expressed (in a unique way) as the
sum of an even function and an odd function. (See Exercise 35 of Section P.5.)
The hyperbolic functions coshx and sinh x are, respectively, the even and odd
functions whose sum is the exponential function e*.
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Figure 3.26
t/2 square units

NITION E

Both shaded areas are

The hyperbolic cosine and hyperbolic sine functions

For any real x the hyperbolic cosine, cosh x, and the hyperbolic sine, sinh x,
are defined by

er+e* . er —e*
coshx = — sinhx = ——

(The symbol “sinh” is somewhat hard to pronounce as written. Some people say
“shine,” and others say “sinch.”) Recall that cosine and sine are called circular
functions because, for any t, the point (cos?, sint) lies on the circle with equation
x? + y? = 1. Similarly, cosh and sinh are called hyperbolic functions because the
point (cosh ¢, sinh ¢) lies on the rectangular hyperbola with equation x? — y? = 1,

cosh®t — sinh®¢ = 1 for any real .

To see this, observe that

e 2 P AN
COShzt—Sinhzt = e——— — ——)

(=5 -

1

4

1

4

/ (cost.sint)

(b)

There is no interpretation of ¢ as an arc length or angle as there was in the circular
case; however, the area of the hyperbolic sector bounded by y = 0, the hyperbola
x% — y? = 1, and the ray from the origin to (cosh ¢, sinh?) is /2 square units (see
Exercise 21 of Section 8.4), just as is the area of the circular sector bounded by
y = 0, the circle x2 + y? = 1, and the ray from the origin to (cosz, sin?). (See
Figure 3.26.)

&Lserve tLat, 51m11ar to tLe corresponcllng Values o[ cos X antl sin x, we Lave



Figure 3.27
sinh and some exponential graphs to
which they are asymptotic

The graphs of cosh and
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coshO =1 "and = sinh0 =0,

and cosh x, like cos x, is an even function, and sinh x, like sin x, is an odd function:

cosh(~—x) = coshx, sinh(—x) = — sinh x .

Many other properties of the hyperbolic functions resemble those of the correspond-
ing circular functions, sometimes with signs changed.
y

\ y—
\y_coshx /

| Example 1 BRUIRIEY

d B
—— ginhx = ¢oshx.
dx

d
— coshx = sinhx ~and
dx

Solution We have

cosh d e +e™”* e +e (1) inh

—_ X = — = =

dx dx 2 2 SIDALY
d ef—e™ e —eF (-1

—_— h = — = = .

I sinh x I 5 2 cosh x

The following addition formulas and double angle formulas can be checked alge-
braically by using the definition of cosh and sinh and the laws of exponents:

cosh(x + y) = coshx coshy + sinhx sinh y,

sinh(x + ) = sinhx cosh'y + coshxsinh y,
costi(2x) = cosh® x + sinh® x = 1 + 2sinh® x = 2cosh®’x — 1,
sinh(2x) = 2 sinh'x cosh x.
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The graphs of cosh and sinh are shown in Figure 3.27. The graph y = coshx is
called a catenary. A chain hanging by its ends will assume the shape of a catenary.

By analogy with the trigonometric functions, four other hyperbolic functions
can be defined in terms of cosh and sinh.

Other hyperbolic functions

sinh x e —e™”* 1 2
tanhx = = sechx = =

cosh x X+ e~ coshx eX+e*

coshx e*+e™* 1 2
cothx = — = cschx = — =

sinh x e — e % sinh x ex —e™*

Multiplying the numerator and denominator of the fraction defining tanhx by e™*
and e*, respectively, we obtain

1— e—2x
lim tanhx = lim —— =1 and
X—00 x—o0 1 4 e—2*
i ) er -1
lim tanhx = lim 2—=—1,
X—>—00 x——00 g2* 4+ 1

so that the graph of y = tanh x has two horizontal asymptotes. The graph resembles
that of the inverse tangent function in shape, as you can see in Figure 3.28.

y

1p-————~=-===== —

Figure 3.28 The graph of tanh x

The derivatives of the remaining hyperbolic functions

_‘f_ tanh x = éechzx j—sechx = —sechx tanh x
dx dx
d 5 d
—= cothx = —csch x —¢schx = —cschx cothx
dx dx

are easily calculated from those of coshx and sinhx using the Reciprocal and
Quotient Rules. For example,

tanh d sinhx (coshx)(cosh x) — (sinh x)(sinh x)
— tanhx = — = -
dx dx coshx cosh” x

1 2
=—>= sech “x.
cosh” x

Remark The distinction between trigonometric and hyperbolic functions largely
disappears if we allow complex numbers instead of just real numbers as variables.
If i is the imaginary unit (so that i2 = —1), then

e =cosx +1isinx and e =cosx —isinx.



SECTION 3.6: Hyperbolic Functions 217

(See Appendix I.) Therefore,

ix —ix
cosh(ix) = €+2—e = COS X, cos(ix) = cosh(—x) = coshx,
. R . 1 .
sinh(ix) = B — =isinx, sin(ix) = — sinh(—x) =i sinh x.
i

Inverse Hyperbolic Functions

The functions sinh and tanh are increasing and therefore one-to-one and invertible
on the whole real line. Their inverses are denoted sinh™! and tanh ™!, respectively:

y=sinh™'x <= x=sinhy,
y=tanh™'x &= 1 =tanhy.

Since the hyperbolic functions are defined in terms of exponentials, it is not sur-
prising that their inverses can be expressed in terms of logarithms.

XN Express sinh~! x and tanh™! x in terms of logarithms.

Solution Lety = sinh™! x. Then

e’ —e™Y _ (@) -1
2 T 2ey

x =sinhy =

(We multiplied the numerator and denominator of the first fraction by e” to get the
second fraction.) Therefore,

(€)?* —2xe® —1=0.
This is a quadratic equation in e”, and it can be solved by the quadratic formula:

2 kAT 14
===

e’ =x+vVx2+1.

Note that +/x2 + 1 > x. Since ¢’ cannot be negative, we need to use the positive
square root:

e =x++vVxT+ 1.
Hence y = 1n (x +Vx%2 + 1), and we have

sinh~1x = In (x +x2 4 1) .
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Now let y = tanh~! x. Then

e —eV e -1
x=tanhy=ey+€_y=e2y+1 (-l1<x <,
xe? +x =€ -1,

1 1

e = +x’ =—In 1+ .

1—x 2 1—x

Thus
1. [1+4x)
tanhflx=-1n(+ U aw<D
2 1=x

Since cosh is not one-to-one, its domain must be restricted before an inverse can be
defined. Let us define the principal value of cosh to be
Coshx = coshx (x > 0).

The inverse, cosh™!, is then defined by

y= cosh™'x

=
=

x = Coshy

X =coshy vy =0).

As we did for sinh ™!, we can obtain the formula

cosh™x =1n (x +v/x2 — 1) ;

|Exercises 3.6

(x = 1).

1.

Verify the formulas for the derivatives of sech x, csch x, and
coth x given in this section.

. Verify the addition formulas

cosh{x + y) = coshx cosh y + sinhx sinhy,
sinh(x + y) = sinhx coshy + coshx sinhy.

Proceed by expanding the right-hand side of each identity in
terms of exponentials. Find similar formulas for
cosh(x — y) and sinh(x — y).

. Obtain addition formulas for tanh(x + y) and tanh(x — y)

from those for sinh and cosh.

. Sketch the graphs of y = cothx, y = sechx, and

y = cschx, showing any asymptotes.

. Calculate the derivatives of sinh~! x, cosh™!x, and

tanh~! x. Hence express each of the indefinite integrals

dx

W

dx

M

dx

x!—l

411

. Simplify the following expressions:

in terms of inverse hyperbolic functions.

. Calculate the derivatives of the functions sinh ™! (x /a),

cosh™! (x/a), and tanh ! (x/a) (where a > 0), and use your
answers to provide formulas for certain indefinite integrals.

(a) sinhinx,
coshlnx + sinhlnx

(b)coshinx, (c)tanhinx,

(d)

coshlnx —sinhInx’

. Let csch ~!x = sinh~!(1/x). Find the domain, range, and

derivative of csch ~!x, and sketch its graph. Express
csch ~Lx in terms of logarithms,

. Do an analogous version of Exercise § for coth™! x.
=10,

Define Sech x at a suitably restricted version of sech x, and
repeat Exercise 8 for the function Sech™'x.

Show that the functions f4 p(x) = Ae** + Be™** and
gc.p(x) = Ccoshkx + D sinh kx are both solutions of the

differential equation y” — k?y = 0. (They are both general

solutions.) Express fa p interms of gc p, and express gc.p
interms of f4 p.
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¢ 12. Show that Ay p(x) = Lcoshk(x —a) + M sinhk(x —a)is & 13. Solve the initial-value problem y” — K2y =0, y(a) = yo,
also a solution of the differential equation in the previous y'(a) = vo. Express the solution in terms of the function
exercise. Express i1y p in terms of the function f4 p above. h1 m of Exercise 12.

A differential equation of the form

ay +by +ey =0, )

where a, b, and ¢ are constants and a # 0, is called a second-order, linear,
homogeneous differential equation with constant coefficients. The second-order
refers to the presence of a second derivative; the terms linear and homogeneous
refer to the fact that if y;(¢) and y,(#) are two solutions of the equation, then so is
y(t) = Ay1(t) + By, (t) for any constants A and B:

If ay{(t) + by (1) + cy1(t) = 0 and ay; (1) + by, (1) + cy2(t) = 0,
and if y(t) = Ay;(¢) + By:(t), then ay”(¢) + by’ (t) + cy(t) = 0.

(Throughout this section we will assume that the independent variable in our func-
tions is ¢ rather than x, so the prime (') refers to the derivative d/dt. This is because
in most applications of such equations the independent variable is time.)

Equations of type () arise in many applications of mathematics. In particular,
they can model mechanical vibrations such as the motion of a mass suspended
from an elastic spring or the current in certain electrical circuits. In most such
applications the three constants a, b, and ¢ are positive, though sometimes we may
have b = 0.

Recipe for Solving ay” + by’ +cy =0
In Section 3.4 we observed that the first-order, constant-coefficient equation y’ = ky

has solution y = Ce*". Let us try to find a solution of equation (%) having the form
y = e"". Substituting this expression into equation (), we obtain

ar’e” + bre™ + ce”t = 0.

Since ¢’ is never zero, y = ¢" will be a solution of the differential equation () if
and only if r satisfies the quadratic auxiliary equation

ar* £ br +¢ =0, (k%)

which has roots given by the quadratic formula:

L _hEVP —dac _ b L vD

2a 2¢a 7 2a’

where D = b? — 4ac is called the discriminant of the auxiliary equation (s#x).

There are three cases to consider, depending on whether the discriminant D is
positive, zero, or negative.
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CASE I Suppose D = b* — 4ac > 0. Then the auxiliary equation has two
different real roots, »; and r,, given by

—b—+/D —b++/D
T 2a T 22
(Sometimes these roots can be found easily by factoring the left side of the auxiliary
equation.) In this case both y = y;(¢) = ¢" and y = y,(r) = ™ are solutions of
the differential equation (), and neither is a multiple of the other. As noted above,
the function

n ra

y=Ae¥ + B

is also a solution for any choice of the constants A and B. Since the differential
equation is of second order and this solution involves two arbitrary constants, we
suspect it is the general solution, that is, that every solution of the differential
equation can be written in this form. Exercise 18 at the end of this section outlines
a way to prove this.

CASEII Suppose D = b? — 4ac = 0. Then the auxiliary equation has two equal
roots, r; = rp = —b/(2a) = r, say. Certainly y = &' is a solution of (x). We
can find the general solution by letting y = e u(¢) and calculating the first two
derivatives of y:

y =" (@) + ru@)),
y' =" (u (1) +2ru'(t) + rzu(t)) .
Substituting these expressions into (x), we obtain
" (au”(t) + Qar + b)u'(t) + (ar® + br + c)u(t)) = 0.

Since e™* # 0, 2ar + b = 0 and r satisfies (x%), this equation reduces to u”(¢) = 0,
which has general solution u(t) = A + Bt for arbitrary constants A and B. Thus
the general solution of (x) in this case is

y=Ae"+ Bre'".

CASE III  Suppose D = b? — dac < 0. Then the auxiliary equatibn (*x) has
complex conjugate roots given by

—b £ Vb? —4dac )
r=——————2 =k*iw,
a

where k = —b/(2a), @ = ~/4ac — b%/(2a), and i is the imaginary unit (i = —1;
see Appendix I). As in Case L, the functions y; () = e®+%)" and y;(r) = e*—/o)
are two independent solutions of (*), but they are not real-valued. However, since

e* =cosx+isinx and e =cosx —isinx
(as noted in the previous section and in Appendix I), we can find two real-valued
functions that are solutions of (*) by suitably combining y} and y3:
_ 1 * l * __ Lkt
@) = 5}’10)"‘ 2)’2(’) = e" cos(wt),

(z)—1 (1) ! (1) = e sin(wt)
y2 —21.)’1 2iy2 = .



SECTION 3.7:  Second-Order Linear DEs with Constant Coefficients 221

Therefore, the general solution of (%) in this case is
y = A€ cos(wt) + B e sin(wt).

The following examples illustrate the recipe for solving (x) in each of the three
cases.

ISR Find the general solution of y” + y' — 2y = 0.

Solution The auxiliary equation is r’+r—2=0,0r(r +2)(r — 1) = 0. The
auxiliary roots are r; = —2 and r, = 1, which are real and unequal. According to
Case I, the general solution of the differential equation is

y=Ae ¥ + Be'.

m Find the general solution of y” + 6y’ 4+ 9y = 0.

Solution The auxiliary equation is r24+6r+9=0,or (r +3)> = 0, which has
equal roots r = —3. According to Case II, the general solution of the differential
equation is

y=Ae > +Bre ™.

IEETEN  Find the general solution of y” + 4y’ + 13y = 0.

Solution The auxiliary equation is r? + 4r + 13 = 0, which has solutions

—4+/16-52 —4+./-36 .
r= > = 5 =—-243i.

Thus £ = —2 and w = 3. According to Case III, the general solution of the given
differential equation is

y = Ae % cos(3t) + Be ¥ sin(3t).

Initial-value problems for ay” + by’ + cy = 0 specify values for y and y’ at an
initial point. These values can be used to determine the values of the constants A
and B in the general solution, so the initial-value problem has a unique solution.

(3 EIIEEY  Solve the initial-value problem

y//+2y/+2y =0
y(0)=2
y'(0) = 3.
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Solution The auxiliary equation is r? + 2r + 2 = 0, which has roots

_ —2+.4-8
===

r -1+

Thus Case III applies, £k = —1 and w = 1. Thus, the differential equation has the
general solution

y=Ae "cost+ Be 'sint.
Also,

y =e(—Acost — Bsint — Asint + B cost)
=(B—A)e'cost —(A+ B)e 'sint.

Applying the initial conditions y(0) = 2 and y’'(0) = —3, we obtain A = 2 and
B — A = —3. Hence, B = —1 and the initial-value problem has the solution

y=2e"cost —e sint.

Figure 3.29

Simple Harmonic Motion

Many natural phenomena exhibit periodic behaviour. The swinging of a clock
pendulum, the vibrating of a guitar string or drum membrane, the altitude of a rider
on a rotating ferris wheel, the motion of an object floating in wavy seas, and the
voltage produced by an alternating current generator are but a few examples where
quantities depend on time in a periodic way. Being periodic, the circular functions
sine and cosine provide a useful model for such behaviour.

It often happens that a quantity displaced from an equilibrium value experiences
a restoring force that tends to move it back in the direction of its equilibrium.
Besides the obvious examples of elastic motions in physics, one can imagine such a
model applying, say, to a biological population in equilibrium with its food supply
or the price of a commodity in an elastic economy where increasing price causes
decreasing demand and hence decreasing price. In the simplest models, the restoring
force is proportional to the amount of displacement from equilibrium. Such a force
causes the quantity to oscillate sinusoidally; we say that it executes simple harmonic
motion.

As a specific example, suppose a mass m is suspended by an elastic spring so
that it hangs unmoving in its equilibrium position. If it is displaced vertically by
an amount y from this position, a force is exerted by the spring, directed to restore
the mass to its equilibrium position. (See Figure 3.29.) This force is proportional
to the displacement (Hooke’s Law); its magnitude is —ky, where k is a positive
constant called the spring constant. Assuming the spring is weightless, this force
imparts to the mass m an acceleration d?y/dt? that satisfies, by Newton’s Second
Law, m(d?y/dt*) = —ky (mass x acceleration = force). Dividing this equation by
m, we obtain the equation

— 4w’y =0, where o’ =

=~



Figure 3.30
motion

Simple harmonic
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The second-order differential equation
d?y 2
— 4+ owy=0
dr? Y

is called the equation of simple harmonic motion. Its auxiliary equation,
r? + »?* = 0, has complex roots r = i w, so it has general solution

y = Acoswt + Bsinot,

where A and B are arbitrary constants.
For any values of the constants R and #j, the function
y = Rcos(w(t — 1))

is also a general solution of the differential equation of simple harmonic motion. If
we expand this formula using the addition formula for cosine, we get

y = R cos wty cos wt + R sin wty sin wt

= Acoswt + Bsinwt,

where
A = R cos(wtp), B = Rsin(wtp),
R? = A%+ B2, tan(wty) = B/A.

y = Rcos(a)(t - to))

The constants A and B are related to the position yg and the velocity vy of the mass
m at time t = 0:

vo=y(0)=Acos0+ Bsin0 = A,
vo =y'(0) = —Awsin0 4+ Bwcos0 = Bw.

The constant R = /A2 + B2 is called the amplitude of the motion. Because cos x
oscillates between —1 and 1, the displacement y varies between —R and R. Note
in Figure 3.30 that the graph of the displacement as a function of time is the curve
y = Rcoswt shifted # units to the right. The number ¢y is called the time-shift.
(The related quantity wty is called a phase-shift.) The period of this curve is
T = 2m/w; it is the time interval between consecutive instants when the mass is at
the same height moving in the same direction. The reciprocal 1/ T of the period is
called the frequency of the motion. It is usually measured in Hertz (Hz), that is,
cycles per second. The quantity & = 27/ T is called the circular frequency. It is
measured in radians per second since 1 cycle = 1 revolution = 2 radians.
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IEEL A  Solve the initial-value problem

y' '+ 16y =0
y(0)=-6
y'(0) = 32.

Find the amplitude, frequency, and period of the solution.

Solution Here, w? = 16 so w = 4. The solution is of the form
y = A cos(4t) + B sin(4t).

Since y(0) = —6, we have A = —6. Also, y'(t) = —4Asin(4t) + 4B cos(4t).
Since y'(0) = 32, we have 4B = 32, or B = 8. Thus, the solution is

y = —6.cos(4t) + 8sin{4t).

The amplitude is /(—6)2 + 82 = 10, the frequency is w/(27) ~ 0.637 Hz, and the
period is 27 /@ &~ 1.57 seconds.

(Spring-mass problem) Suppose that a 100 gram mass is sus-

pended from a spring and that a force of 3 x 10* dynes (3 x 10* g-cm/s?) is required
to produce a displacement from equilibrium of 1/3 cm. At time ¢ = O the mass is
pulled down 2 cm below equilibrium and flicked upward with a velocity of 60 cm/s.
Find its subsequent displacement at any time ¢ > 0. Find the frequency, period,
amplitude, and time-shift of the motion. Express the position of the mass at time ¢

in terms of the amplitude and the time-shift.

Solution The spring constant k is determined from Hooke’s Law, F = —ky.
Here F = —3 x 10* g-cmy/s? is the force of the spring on the mass displaced 1/3 cm:

1
—3 x 10* = —Zk,
% 3

sok =9 x 10* g/sz. Hence, the circular frequency is @ = /k/m = 30 rad/s, the
frequency is w/2n = 15/n =~ 4.77 Hz, and the period is 27 /w ~ 0.209 s.

Since the displacement at time f = 0 is yp = —2 and the velocity at that time
is vp = 60, the subsequent displacement is y = A cos(30¢) + B sin(30¢), where
A=yp=-2and B = vy/w = 60/30 = 2. Thus

y = —2cos(30¢) + 2 sin(30¢), (y in cm, ¢ in seconds).

The amplitude of the motion is R = /(—=2)2 +22 = 2+/2 ~ 2.83 cm. The
time-shift o must satisfy

—2 = A = Rcos(wty) = 242 c0s(301),
2 = B = Rsin(wty) = 2+/2 sin(301),




Figure 3.31

Undamped oscillator (b = 0)
Damped oscillator (b > 0, b% < 4ac)
Critically damped case (b > 0,

b? = 4uc)

Overdamped case (b > 0, b* > 4ac)
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so sin(307y) = l/ﬁ = — cos(30tp). Hence the phase-shiftis 30¢yp = 37 /4 radians,
and the time-shift is to = /40 ~ 0.0785 s. The position of the mass at time ¢ > 0
is also given by

y = 2+/2 cos (30(t - Z_O)) .

Damped Harmonic Motion

If a and c are positive and b = 0, then equation
ay’ +by +cy =0

is the differential equation of simple harmonic motion and has oscillatory solutions
of fixed amplitude as shown above. If @ > 0, b > 0, and ¢ > 0, then the roots
of the auxiliary equation are either negative real numbers or, if b < 4ac, complex
numbers k + iw with negative real parts k = —b/(2a) (Case III). In this latter case
the solutions still oscillate, but the amplitude diminishes exponentially as 1 — oo
because of the factor e¥ = e~/20"  (See Exercise 17 below.) A system whose
behaviour is modelled by such an equation is said to exhibit damped harmonic
motion. If »> = 4ac (Case II), the system is said to be critically damped, and
if b2 > 4dac (Case I), it is overdamped. In these cases the behaviour is no longer
oscillatory. (See Figure 3.31. Imagine a mass suspended by a spring in a jar of oil.)

y y

undamped damped oscillator

/ N\

VAA

Y critically damped K

VA

overdamped

N — |
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Non-homogeneous Equations and Resonance

A second-order, linear, constant coefficient differential equation of the form
ay" +by +cy=f@t)  (¥¥%)

is non-homogeneous because the term f(¢) is not a multiple of y or one of its
derivatives like the other terms of the equation. This term can represent an “external”
force applied to the system being modelled by the equation. For example, it might
represent an outside force being applied to the mass suspended by the spring we
considered earlier or an applied voltage in an electric circuit.

If we can find any one solution y(t) = yp(f) of equation (***) (called a
particular solution), then the general solution of (¥**)is y(¢t) = yp(f) + yu(t),
where yy (¢) is the general solution of the corresponding homogeneous equation

ay”"+ by +cy =0.
12 CL I 1t is easily seen that yp(¢) = 1 is a solution of
v +3y +2y =2.
(Here f(t) = 2.) The corresponding homogeneous equation y” + 3y’ + 2y = 0
has auxiliary equation r24+3r +2 =0, with roots r = —2 and r = —1. Thus, the
non-homogeneous equation has general solution

y =1+ Ae % + Be™'

with arbitrary constants A and B.

Techniques for solving non-homogeneous equations are beyond the scope of this
book, but we can sometimes guess the form of a solution and thus find one. For a
sinusoidal forcing term such as f(¢) = sin(At) we can try

yp(t) = Acos(it) + Bsin(At).

This will work as long sin(Af) is not a solution of the corresponding homogeneous
equation. If sin(Az) is a solution of the corresponding homogeneous equation, try

yp(t) = At cos(rt) 4+ Btsin(At).
S ETLIER N  (Resonance) Consider the initial-value problem
y" + y = sin(Ar)

y(0)=0
Y'(0) =1,
where A # 1. Substituting the trial solution suggested above, we obtain A = 0 and

B = 1/(1 — A?). Since the homogeneous equation y” + y = 0 has general solution
y == C cost + Dsint, the given DE has general solution




Figure 3.32

Resonance
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1
= ——sin(At) + Ccost + Dsint.
Y =157 sin@)

Applying the two initial conditions leads to the values C = 0 and
D=(10-x—=29)/(1 - A2), so the TVP has solution

sin(Af) + (1 — A — A% sin¢
1— 22 '

y(@) =) =

For A = 1 the nonhomogeneous term in the DE is a solution of the homogeneous
equation y”+y = 0, so we must try for a particular solution of another form, namely
y = At cost + Btsint. In this case the solution of the initial-value problem is

3sint —tcost

@) = 5

(This solution can also be found by calculating lim; _,; y,(¢) using I’Hdpital’s Rule;
see Section 4.9.) Observe that this solution is unbounded; the amplitude of the
oscillations becomes larger and larger as ¢ increases. In contrast, the solutions y; (¢)
for A s 1 are bounded for all ¢, although they can become quite large for some
values of ¢ if A is close to 1. The graphs of the solutions yp 9(?), y0.95(¢), and y; (¢)

on the interval —10 < ¢ < 100 are shown in Figure 3.32.
|

The phenomenon illustrated in the above example is called resonance. Vi-
brating mechanical systems have natural frequencies at which they will vibrate,
If you try to force them to vibrate at a different frequency, the amplitude of the
vibrations will themselves vary sinusoidally over time, producing an effect known
as beats. The amplitudes of the beats can grow quite large, and the period of the
beats lengthens as the forcing frequency approaches the natural frequency of the
system. If the system has no resistive damping (the one illustrated above has no
damping), then forcing vibrations at the natural frequency will cause the system to
vibrate at ever increasing amplitudes.

Asaconcrete example, if you push a child on a swing, the swing will rise highest
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|Exercises 3.7

if your pushes are timed to have the same frequency as the natural frequency of the
swing. Resonance is used in the design of tuning circuits of radios; the circuit is
tuned (usually by a variable capacitor) so that its natural frequency of oscillation
is the frequency of the station being tuned in. The circuit then responds much
more strongly to the signal received from that station than to others on different
frequencies.

Remark Maple has a dsolve routine for solving (some) differential equations
and initial value problems. This routine takes as inputs a DE and, if desired, initial
conditions for it. We illustrate for the equation y” + 2y’ 45y = 25¢ + 20 (assuming
that the independent variable is f):

> DE := (DEE2) (y) (L) +2*D(y) (t)+5*y(t)=25*t+20;

DE := (DP)(y)(t) + 2D(y)(t) + Sy(t) = 25t + 20
> dsolve (DE, v(t));

y(#) =245t + _Cle=" cos(2t) + -C2¢ sin(21)

Note Maple’s use of _.C1 and _C2 for arbitrary constants. For an initial-value
problem we supply the DE and its initial conditions to dsolve as a single list or
set argument enclosed in square brackets or braces:

> dsoclve([DE, y{(0)=3, D(y) (0)=-2], y(t));

y(t) =24 5t + e cos(2t) — 3¢~V sin(21)

You might think that this output indicates that y has been defined as a function of ¢
and you can find a decimal value for, say, y(1) by giving the input evalf (v (1) ).
But this won’t work. In fact, the output of the dsolve is just an equation with left
side the symbol y(f). We can, however, use this output to define y as a function of
t as follows:

> vy := unapply(op(2,%),t);

yi=t—> 2+ 5t+e cos(2t) — 3¢ sin(2t)

The op (2, %) in the unapply command refers to the second operand of the
previous result (i.e., the right side of equation output from the dsolve). unap-
ply (£, t) converts an expression f to a function of t. To confirm:

> evalf(y(1l));
5.843372646

In Exercises 1-12, find the general solutions for the given In Exercises 13-15, solve the given initial-value problems.

equations.

1.y +7y +10y =0 2.y =2y -3y =0
3.y"+2y'=0 4. 4y" —

2y" 45y —3y =0 y' + 10y +25y =0
13. 1y0=1 14. { () =0
’
4" =3y=0 y'(0) = 0. Y1)y =2.

5. y'4+8Y +16y=0 6. Y/ -2y +y=0 Y +4y +5y=0

7.y =6y +10y =0 8.9y +6y +y=0

9. y"42y +5y=0 10. v/ — 4y +5y=0

"AREAL R

15. { y0) =2
Y (0) = 2.

(e _ e
*16. Show that if € # 0, the function y(t) = ——



satisfies the equation y” — (2 +€)y’ + (1 +€)y = 0.
Caclulate y(t) = lim¢_, ¢ ye(¢) and verify that, as expected,
it is a solution of y" — 2y’ +y = 0.
. Ifa > 0,b > 0,and c > 0, prove that all solutions of the
differential equation ay” + by’ + cy = 0 satisfy
limy—s o0 (1) = 0.
Prove that the solution given in the discussion of Case I,
namely, y = A e"'' + B ¢!, is the general solution for that
case as follows: first, let y = "’y and show that u satisfies
the equation

* 18.

W —(ro —rpu’ =0.

Then let v = #’, so that v must satisfy v' = (ry — r|)v. The
general solution of this equation is v = C ¢727")¢_as shown
in the discussion of the equation y’ = ky at the beginning of
Section 4.4. Hence find # and y.

Simple harmonic motion
Exercises 19-22 all refer to the differential equation of simple
harmonic motion:

d?y

— 4+ @’y =0,

s (@ #0). 1)

Together they show that y = A coswt + B sinwt is a general
solution of this equation, that is, every solution is of this form for
some choice of the constants A and B.

* 19, Show that y = A cos wt + B sinwt is a solution of ().

=20, If f(¢) is any solution of (1), show that
@ (f(1))? + (f'(r))? is constant.

*21. If g(r) is a solution of (}) satisfying g(0) = g’(0) = 0, show
that g(¢) = O for all ¢.

*22. Suppose that f(¢) is any solution of the differential equation
(1). Show that f(¢) = A cos wt + B sinwt, where
A = f(0)and Bw = f/(0).
(Hint: let g(t) = f(t) — Acoswt — Bsinwt.)

«23. If b* — 4ac < 0, show that the substitution y = e u(r),

where k = —b/(2a), transforms ay” + by’ + cy = 0 into
the equation u” + w?u = 0, where w? = (4ac — b%)/(4a2).
Together with the result of the previous exercise, this
confirms the recipe for Case III, in case you didn’t feel
comfortable with the complex number argument given in the
text.

In Exercises 24-25, solve the given initial-value problems. For

each problem determine the circular frequency, the frequency,
the period, and the amplitude of the solution.

y'+4y=0 ¥+ 100y =0
24. I y(0) =2 25. 3y =0
V() =-5 Y(0) =3

#26. Show that y = o cos(w(t — ¢)) + Bsin(w(t —¢)) is a
solution of the differential equation y” + w?y = 0, and that
it satisfies y(c) = « and y’(¢) = Bw. Express the solution in
the form y = A cos(wt) + B sin(wt) for certain values of the
constants A and B depending on «, B, ¢, and w.
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y//+y:0 y//_+_w2y:0
27. Solve § y(2) =3 28. Solve § y(a) = A
Y2 = -4 y'(a)=B8B

29. What mass should be suspended from the spring in
Example 6 to provide a system whose natural frequency of
oscillation is 10 Hz? Find the displacement of such a mass
from its equilibrium position ¢ s after it is pulled down 1 cm
from equilibrium and flicked upward with a speed of 2 cm/s.
What is the amplitude of this motion?

30. A mass of 400 g suspended from a certain elastic spring will
oscillate with a frequency of 24 Hz. What would be the
frequency if the 400 g mass were replaced with a 900 g
mass? a 100 g mass?

Show that if ¢y, A, and B are constants and k = —b/(2a)

and @ = +/4ac — b?/(2a), then

y = e [Acos(w(t —19)) + Bsin(w(t — 10))]

*31.

is an alternative to the general solution for

ay” + by + ¢y = 0 for Case Il (b*> — 4ac < 0). This form
of the general solution is useful for solving initial-value
problems where y(fp) and y’(fo) are specified.

Show that if #y, A, and B are constants and k = —b/(2a)

and w = +/b? — 4ac/(2a), then

y = e~ [A cosh(a)(l — to)) + B sinh(co(t — to))]

* 32,

is an alternative to the general solution for

ay” + by’ + ¢y =0 for Case I (b* — 4ac > 0). This form of
the general solution is useful for solving initial-value
problems where y(7p) and y'(z) are specified.

Use the forms of solution provided by the previous two exercises
to solve the initial-value problems in Exercises 33-34.

Y'+2y' +5y=0 Y'+4y +3y=0
3. {y3=2 4.1 y3) =1
y'(3)y=0 y'(3)=0

In Exercises 3540 try to find a particular solution to the given
non-homogeneous equation by guessing its form. Then write the
general solution of the equation.
35,y 4y —2y=1 3. Y/ +y —2y=t
37. Y +y —2y=e! 38. v/ + 3y — 2y = 20cos(2t)
39. y' +y =2y =10’ sins 40. y' +y —2y =¢'

Euler or equidimensional equations

Exercises 41-46 refer to the Euler or equidimensional equation

2.1

at”y" +bty' +cy =0, *)

where a, b, and ¢ are constants and y(¢) is defined for ¢ > 0.
Associated with the DE (*) is an auxiliary quadratic equation

ar(r — 1) +br +c=0. 6]
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* 41. Show that if r satisfies (1), then y = #” is a solution of (*).
What 15 the general solution of (¥) if (1) has two diffarent
real roots vy and rp?

= 42, If (1) has two equal roots r, show that y; = ¢ and
y2 = t" Int are both solutions of (*).

* 43, If () has complex conjugate roots r = « % i, where o and

Chapter Review

B are real and 8 # 0, show that y; = 1% cos(81n¢) and
ys = 1% sin(B Int) are both solutions of (*).

44. What is the general solution of 2¢2y" — ¢y’ — 2y = 0?
45. What is the general solution of t2y” — 3ty’ 4 4y = 0?
46. What is the general solution of t2y” — 31y’ 4 13y = 0?

Key Ideas

o State the laws of exponents.

o State the laws of logarithms.

e What is the significance of the number ¢?

¢ What do the following statements and phrases mean?
¢ f is one-to-one. o f is invertible.

Function f~! is the inverse of function f.

ab

=c olog,b=c
the natural logarithm of x

logarithmic differentiation

the half-life of a varying quantity

The quantity y exhibits exponential growth.
The quantity y exhibits logistic growth.

1

y=sin""x oy=tan"lx

The quantity y exhibits simple harmonic motion.

LR R v SR R > IR e IR R B I ]

The quantity y exhibits damped harmonic motion.

o Define the functions sinh x, cosh x, and tanh x.

e What kinds of functions satisfy second-order differential
equations with constant coefficients?

Review Exercises

1. If f(x) = 3x + x>, show that f has an inverse and find the
slope of y = f~1(x) at x = 0.

2. Let f(x) = sec? x tanx. Show that f is increasing on the
interval ]—m/2, /2] and, hence, one-to-one and invertible
there. What is the domain of f='? Find (f~1Y(2). Hint:
f(m/4) =2,

Exercises 3-5 refer to the function f(x) = x e,

3. Find limy_, 0 f(x) and limy_, o, f(x).

4. On what intervals is f increasing? decreasing?

5. What are the maximum and minimum values of f(x)?

6. Find the points on the graph of y = ¢ * sinx, (0 < x < 2m)
where the graph has a horizontal tangent line.

7. Suppose that a function f(x) satisfies f/'(x) = x f(x) for all
real x, and f(2) = 3. Calculate the derivative of f(x)/ er/ 2,

IO O 000 oy

8. A lump of modelling clay is being rolled out so that it main-
tains the shape of a circular cylinder. If the length is increas-
ing at a rate proportional to itself, show that the radius is
decreasing at a rate proportional to itself.

9. (a) What nominal interest rate, compounded continuously,
will cause an investment to double in 5 years?

(b) By about how many days will the doubling time in part
(a) increase if the nominal interest rate drops by 0.5%?

. (A poor man’s natural logarithm)
(a) Show that if ¢ > 0, then

h
.oa =
lim =lIna.
h—0

Hence show that

lim n(@'/" — 1) = Ina.
n—>0oC

(b

~

Most calculators, even non-scientific ones, have a square
root key. If n is a power of 2, say n = 2%, then a'/" can
be calculated by entering ¢ and hitting the square root
key k times:

M =\ a

Then you can subtract 1 and multiply by n to get an
approximation for Ina. Use n = 2'9 = 1024 and

n = 211 = 2048 to find approximations for In2. Based
on the agreement of these two approximations, quote
a value of In2 to as many decimal places as you feel
justified.

(k square roots).

11. A nonconstant function f satisfies

d 2 ,
—(fw) = (rw)’

forall x. If f(0) =1, find f(x).

12. If f(x) = (Inx)/x, show that f'(x) > 0for0 < x < e and
f/(x) < 0for x > e, so that f(x) has a maximum value at
x = e. Use this to show that ¢™ > 7¢.

13. Find an equation of a straight line that passes through the

(D ol =1y



*

14.

16.

17.

18.

19.

20.
21.

. In x In2
(a) Find x # 2 such that — = -
X
(b) Find b > 1 such that there is no x 3 b with
Inx Inb
x b

. Investment account A bears simple interest at a certain rate.

Investment account B bears interest at the same nominal rate
but compounded instantaneously. If $1,000 is invested in
each account, B produces $10 more in interest after one year
than does A. Find the nominal rate both accounts use.

Express each of the functions cos™ x, cot™L x, and csc™! x
in terms of tan~!.

1 1

Express each of the functions cos™ " x, cot™! x, and csc™
in terms of sin™!,

X

(A warming problem) A bottle of milk at 5°C is removed
from a refrigerator into a room maintained at 20°C. After 12
min the temperature of the milk is 12°C. How much longer
will it take for the milk to warm up to 18°C?

(A cooling problem) A kettle of hot water at 96°C is allowed
to sit in an air-conditioned room. The water cools to 60°C
in 10 min and then to 40°C in another 10 min. What is the
temperature of the room?

Show that e* > | +x ifx # 0.

Use mathematical induction to show that

2 X"

X 1 X
> ldxd ot

if x > 0 and » is any positive integer.

Challenging Problems

1.

(a) Show that the function f(x) = x" is strictly increasing
on [e_l, oolf.

(b) If g is the inverse function to f of part (a), show that

i g(y) In(ln y)
m ——— =
y—00 Iny

1

Hint: start with the equation y = x* and take the In of
both sides twice.

Two models for incorporating air resistance into the analysis
of the motion of a falling body

2.

(Air resistance proportional to speed) An object falls under
gravity near the surface of the earth, and its motion is impeded
by air resistance proportional to its speed. Its velocity v
therefore satisfies the equation

dv_ P N
dt_ g v, ()

where k is a positive constant depending on such factors as
the shape and density of the object and the density of the air.
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(a) Find the velocity of the object as a function of time ¢,
given that it was vg at t = 0.

(b) Find the limiting velocity lim;_, o v(#). Observe that this
can be done either directly from (x) or from the solution
found in (a).

(c) If the object was at height yg at time ¢ = 0, find its height
y(t) at any time during its fall.

. (Air resistance proportional to the square of speed) Under

certain conditions a better model for the effect of air resistance
on a moving object is one where the resistance is proportional
to the square of the speed. For an object falling under constant
gravitational acceleration g, motion is

dv ko]
— = —g — kv|v|,
a8

where k > 0. Note that vjv! is used instead of v? to ensure
that the resistance is always in the opposite direction to the
velocity. For an object falling from rest at time ¢ = 0, we
have v(0) = 0 and v(¢) < O for ¢t > 0, so the equation of
motion becomes

v + kv?
_—= v,
a - ¢

We are not (yet) in a position to solve this equation. However,
we can verify its solution.

(a) Verify that the velocity is given for ¢ > 0 by

63) \/} 1 — e2V/sk
)= [ ———.
k 1+62[\/§I:
(b) What is the limiting velocity lim;, o0 v(2)?

(c) Also verify that if the falling object was at height yg at
time ¢ = 0, then its height at subsequent times during its
fall is given by

y() =yo+

g ] 1+62t4/gk
~t——In| —— .
k k 2

. (A model for the spread of a new technology) When a new

and superior technology is introduced, the percentage p of
potential clients that adopt it might be expected to increase
logistically with time. However, even newer technologies are
continually being introduced, so adoption of a particular one
will fall off exponentially over time. The following model
exhibits this behaviour:

dp P
—=kp(1 - ——).
dt p( e‘b’M)
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This DE suggests that the growth in p is logistic but that the
asymptotic limit is not a constant but rather e=? M, which
decreases exponentially with time.

(a) Show that the change of variable p = e % y(r) trans-
forms the equation above into a standard logistic equa-

tion, and hence find an explicit formula for p(¢) given
that p(0) = pg. It will be necessary to assume that
M << 100k/(b + k) to ensure that p(¢) < 100.

b) Ifk=10,b =1, M =90, and pp = 1, how large will
p(t) become before it starts to decrease?



