CHAPTER M

Vector Functions
and Curves

Introduction This chapter is concerned with functions of a single real variable that
have vector values. Such functions can be thought of as parametric representations
of curves, and we will examine them from both a kinematic point of view (involving
position, velocity, and acceleration of a moving particle) and a geometric point of
view (involving tangents, normals, curvature, and torsion). Finally, we will work
through a simple derivation of Kepler’s laws of planetary motion.

In this section we will examine several aspects of differential and integral calculus
as applied to vector-valued functions of a single real variable. Such functions can
be used to represent curves parametrically. It is natural to interpret a vector-valued
function of the real variable ¢ as giving the position, at time ¢, of a point or “particle”
moving around in space. Derivatives of this position vector are then other vector-
valued functions giving the velocity and acceleration of the particle. To motivate
the study of vector functions we will consider such a vectorial description of motion
in 3-space. Some of our examples will involve motion in the plane; in this case the
third components of the vectors will be 0 and will be omitted.

If a particle moves around in 3-space, its motion can be described by giving
the three coordinates of its position as functions of time 7:

x =x(1), y=y@), and  z=z(1).
It is more convenient, however, to replace these three equations by a single vector
equation,

r= r(t)7

giving the position vector of the moving particle as a function of ¢. (Recall that the
position vector of a point is the vector from the origin to that point.) In terms of the
standard basis vectors i, j, and k, the position of the particle at time ¢ is

I+ Y0+ 20k

As t increases, the particle moves along a path, a curve C in 3-space. If z(z) = 0,
then C is a plane curve in the xy-plane. We assume that C is a continuous curve;
the particle cannot instantaneously jump from one point to a distant point. This
is equivalent to requiring that the component functions x(¢), v(¢), and z(¢) are
continuous functions of ¢, and we therefore say that r(¢) is a continuous vector
function of ¢.

In the time interval from f to t 4+ At the particle moves from position r(¢) to
position r(z + At). Therefore, its average velocity is
r(t + Ar) —r(t)
At ’
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Figure 11.1 The velocity v(z) is the
derivative of the position r(t) and is
tangent to the path of motion at the
point with position vector r(t)

r =123+

which is a vector parallel to the secant vector from r(z) to r(t + At). If the average
velocity has a limit as Ar — 0, then we say that r is differentiable at ¢, and we
call the limit the (instantaneous) velocity of the particle at time r. We denote the
velocity vector by v(¢):

a Kt +AD =T _d
velocity: - v(t) f-}rl_% AL = dtr(t)'

v(t)

r(t + Ar) C

This velocity vector has direction tangent to the path C at the point r() (see
Figure 11.1), and points in the direction of motion. The length of the velocity
vector, v(t) = |v(¢)|, is called the speed of the particle:

speed: v(t) x v(t)i

Wherever the velocity vector exists, is continuous, and does not vanish, the path C
is a smooth curve, that is, it has a continuously turning tangent line. The path may
not be smooth at points where the velocity is zero, even if the components of the
velocity vector are smooth functions of ¢.

Consider the plane curve r = #3i + £?j. Its component functions 3
and 2 have continuous derivatives of all orders. However, the curve is not smooth
at the origin (t = 0), where its velocity v = 3121 4 2tj = 0. (See Figure 11.2.) The
curve is smooth at all other points where v(t) # 0.

X
Figure 11.2 The components of r(z)
are smooth functions of ¢, but the curve
fails to be smooth at the origin, where
v=_0

_u
The rules for addition and scalar multiplication of vectors imply that
dr
v=—
dt
. [ x@HA) —x(t),  yE+AD) —y@),  z(+ A —z(1)
=1 k
A}Lno< At T Ar I+ At
dx . + dy. dz
= —1 - —
dt ar’ "

Thus, the vector function r is differentiable at ¢ if and only if its three scalar
components, x, y, and z, are differentiable at . In general, vector functions can
be differentiated (or integrated) by differentiating (or integrating) their component
functions, provided that the basis vectors with respect to which the components are
taken are fixed in space and not changing with time.

Continuing our analysis of the moving particle, we define the acceleration of
the particle to be the time derivative of the velocity:
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Newton’s Second Law of Motion asserts that this acceleration is proportional to,
and in the same direction as, the force F causing the motion: if the particle has
mass m, then the law is expressed by the vector equation F = ma.

IR  Describe the curve r = i + ¢%j + ’k. Find the velocity and
acceleration vectors for this curve at (1, 1, 1).

Solution Since the scalar parametric equations for the curve are
x =t, y =1t and z=1r,

which satisfy y = x? and z = x3, the curve is the curve of intersection of the two
cylinders y = x? and z = x°. At any time ¢ the velocity and acceleration vectors
are given by

dr
= —i+2j+ 3£k,
v a7 1+2t)+
dv
a=— =2j+ 6zrk.
dt I+

The point (1, 1, 1) on the curve corresponds to t = 1, so the velocity and acceleration
at that point are v = i + 2j + 3k and a = 2j + 6k, respectively.

Find the velocity, speed, and acceleration, and describe the motion
of a particle whose position at time f is

r=3coswti+4coswtj+ Ssinwt k.

Solution The velocity, speed, and acceleration are readily calculated:

dr L . .
V= E:—3wsmwt1—4wsmwt1+5wcoswtk
v=|v|=5w

dv 2 . 2 . 2 2
a= i —3w coswti— 4w coswt j — Sw” sinwtk = —wr.

Observe that [r| = 5. Therefore, the path of the particle lies on the sphere with
equation x? 4 y? + z2 = 25. Since x = 3coswt and y = 4 coswt, the path also
lies on the vertical plane 4x = 3y. Hence, the particle moves around a circle of
radius 5 centred at the origin and lying in the plane 4x = 3y. Observe also that r
is periodic with period 27 /w. Therefore, the particle makes one revolution around
the circle in time 27 /w. The acceleration is always in the direction of —r, that is,
toward the origin. The term centripetal acceleration is used to describe such a
“centre-seeking” acceleration.




654

Figure 11.3
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Solution If the position of the particle at time ¢ is r(z), then its acceleration is
d*r/dt*. The position of the particle can be found by solving the initial-value
problem

d*r dr
—— = —8k, —|  =Vo, r(0) =ry.
dt|,_o

We integrate the differential equation twice. Each integration introduces a vector
constant of integration that we can determine from the given data by evaluating at
t=0:

dar

— =g tk 4+ vp

dt
2

t
I'Zﬂg?k'i-Vot-Fl‘o.

The latter equation represents a parabola in the vertical plane passing through the
point with position vector ry and containing the vector vo. (See Figure 11.3.) The
parabola has scalar parametric equations

X = ugt + xo,

I

vof + Yo,
g*
7= 5 + wot + 2o,

where rg = xoi + yoj + zok and vg = upi + voj + wok.

The path of a projectile
fired from position rg with velocity vy

An object moves to the right along the plane curve y = x2 with
constant speed v = 5. Find the velocity and acceleration of the object when it is at
the point (1, 1).

Solution The position of the object at time ¢ is
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r = xi+ x?%j,
where x, the x-coordinate of the object’s position, is a function of ¢. The object’s

velocity, speed, and acceleration at time ¢ are given by

_dr_dxi dx__dx
Ve T @ T T @

d dx
v= v = |d—’:1\/1 + 207 = VT +ax,

(i + 2xj),

dv  d*x dx\’
=—=—(i+2xj)+2{=) j.
A= dt2(1+ xJ) + (dt) J

(In the speed calculation we used |dx/dt| = dx/dt because the object is moving
to the right.) We are given that the speed is constant; v = 5. Therefore,

dx _ 5
dt — J1+4x%

When x = 1, we have dx/dt = 5/+/T+ 4 = /5, so the velocity of the object at
that point is v = +/5i + 2+/5j. Now we can calculate

d*x _d 5 _(d 5 dx
dt2  dt J1+4x2 \dx J/1+4x2) dt
5 81) 5 100x
= — X = - .
2(1 + 4x2)3/2 1+ 4x2 (14 4x2)2
At x = 1, we have d%x /a’t2 = —4. Thus, the acceleration at that point is

a=—4(+2j) + 10j = —4i + 2j.
|

Remark Note that we used x as the parameter for the curve in the above example,
so we could use ¢ for time. If you want to analyze motion along a curve r = r(¢),
where ¢ is just a parameter, not necessarily time, then you will have to use a different
symbol, say u, for time. The physical velocity and acceleration of a particle moving
along the curve are then

_dr_dtdr G dv _drdr (di\'dr
Cdu du) di*’

V= — = — and —
du du dt du  du? dt
Be careful how you interpret ¢ in a problem where time is meaningful.

Differentiating Combinations of Vectors

Vectors and scalars can be combined in a variety of ways to form other vectors or
scalars. Vectors can be added and multiplied by scalars and can be factors in dot
and cross products. Appropriate differentiation rules apply to all such combinations
of vector and scalar functions; we summarize them in the following theorem.

Differentiation rules for vector functions

Let u(z) and v(¢) be differentiable vector-valued functions, and let A(¢) be a differ-
entiable scalar-valued function. Then u(z) + v(z), A(#)u(z), u(z) e v(¢), u(z) X v(t),
and u(A(¢)) are differentiable, and
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@ 200 +v0) =w0+v0
(b) %(k(z‘)u(t)) = N(Bu() + AMOW @)
© 5}" u(®) e V() = /(1) 0 v()) +u(®) 8 V(®)
@ %(u(z) xv(t)) =W)XV +u{) XV (1)
(e % u(w))) =1 (O (A (D).

Also, at any point where u(r) # 0,

d .. ul)e v
@ E;?ﬁl(i)l & e Ill(t)if

Remark Formulas (b), (¢), and (d) are versions of the Product Rule. Formula (e)
is a version of the Chain Rule. Formula (f) is also a case of the Chain Rule applied
to [u] = /u e u. All have the obvious form. Note that the order of the factors is the
same in the terms on both sides of the cross product formula (d). It is essential that
the order be preserved because, unlike the dot product or the product of a vector
with a scalar, the cross product is not commutative.

Remark The formula for the derivative of a cross product is a special case of that
for the derivative of a 3 x 3 determinant. (See Section 10.3.) Since every term
in the expansion of a determinant of any order is a product involving one element
from each row (or column), the general Product Rule implies that the derivative of
an n X n determinant whose elements are functions will be the sum of n suchn x n
determinants, each with the elements of one of the rows (or columns) differentiated.
For the 3 x 3 case we have

ay () anp() ap;(@)
an (1) an(t) ax() an(t) an() axn()
az (t) an(t) ax(@) asz (1) as(t) axn@)
ai(t) an®) aps®) an(t) an@) a;()
ay () ay(t) axp() axi(t) axn(t) axn()
az1(t) axn(t) as(t) ay (1) ay() ayr)

ay (1) ap(t)  ap)

+ +

SELJILENY  Show that the speed of a moving particle remains constant over
an interval of time if and only if the acceleration is perpendicular to the velocity
throughout that interval.

Solution  Since (v(1))” = v(£) » V(t), we have
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2v(t)% - %(v(r))z - %(v(r) ov(t))

=a(t)ev(t) +v(t)ea(t) =2v(r) ea(t).

If we assume that v(z) # 0, it follows that dv/dt = 0 if and only if ve a = 0. The
speed is constant if and only if the velocity is perpendicular to the acceleration.

SELTICW A If u is three times differentiable, calculate and simplify the triple
product derivative

d (du o d Zu)
—(ue{—x——1]].
dt dt  dr?
Solution Using various versions of the Product Rule, we calculate
d (du y d*u )
Zlue( == —
dr\"\dr " ar

_du (duxdzu)+u.(d2u d2u>+u.(d_u d3u)

=—eof—X— — X — X ——
dt ¢ dt = dr? dr? " dr? dt " dt?
040+ (duxd3U) " (duxd3u)
= Ue{—X—)=1ue| —X——).
dt " de3 dt = de3

The first term vanishes because du/dt is perpendicular to its cross product with
another vector; the second term vanishes because of the cross product of identical

vectors.

_u

| Exercises 11.1

In Exercises 1-14, find the velocity, speed, and acceleration at
time ¢ of the particle whose position is r(¢). Describe the path of
the particle.

16.

A particle moves to the right along the curve y = 3/x. If its
speed is 10 when it passes through the point (2, %), what is
its velocity at that time?

Loreis i 2 r =itk 17. A point P moves along the curve of intersection of the
ST=1 S P=UI eylinder z = x? and the plane x + y = 2 in the direction of
. s s i i ith constant speed v = 3. Find the velocity of
3 =i+ 1k r= K increasing y wit
r=rit 4 r=i+ij+1 P whenitisat (1,1, 1).
5.r=ri—1%j+k 6. r=ti+ z2j + £’k 18. An object moves along the curve y = x2, z = x>, with
7. r=acosti+asintj+ crk constant vertical speed dz/dt = 3. Find the velocity and
. . . acceleration of the object when it is at the point (2, 4, 8).
8. r=acoswti+ bj+asinwrk . . 2 3.
. . . 19. A particle moves along the curve r = 3ui + 3u°j + 2uk in
9. r=3costi+4costj+ Ssintk

10. r =3costi+4sintj+rk

11. r = aé'i+ be'j+ ce'k

12. r=atcoswrti+atsinwtj+ blntk
13. r = ¢ cos(e')i+ ¢ sin(e’)j — €'k
14. r=acostsinti+asin2tj+acostk

15. A particle moves around the circle x> + y? = 25 at constant
speed, making one revolution in 2 s. Find its acceleration
when it is at (3, 4).

20.

the direction corresponding to increasing # and with a
constant speed of 6. Find the velocity and acceleration of
the particle when it is at the point (3, 3, 2).

A particle moves along the curve of intersection of the
cylinders y = —x? and z = x2 in the direction in which x
increases. (All distances are in centimetres.) At the instant
when the particle is at the point (1, —1, 1), its speed is

9 cm/s, and that speed is increasing at a rate of 3 cm/s®. Find
the velocity and acceleration of the particle at that instant.
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in Theorem 1(c).

23. Verify the formula for the derivative of a 3 x 3 determinant
in the second remark following Theorem 1. Use this
formula to verify the formula for the derivative of the cross
product in Theorem 1.

24, If the position and velocity vectors of a moving particle are
always perpendicular, show that the path of the particle lies
on a sphere.

25. Generalize the previous problem to the case where the
velocity of the particle is always perpendicular to the line
joining the particle to a fixed point Fy.

26. What can be said about the motion of a particle at a time
when its position and velocity satisfy r ¢ v > 07 What can
be said whenrev < 0?

In Exercises 27-32, assume that the vector functions

encountered have continuous derivatives of all required orders.

d fdu d’u du d*u
27. Sh thw—(—x—):—x—.
ow tha dt = de? dt = dr3

dt
d
28. Write the Product Rule for I (u . (vxw)).

d
29. Write the Product Rule for n (u X (VX W)).

32.
33.

¢ 34.

¢ 35.

Expand and simplify: 7 \(uXu’) e (U XU’ )}.

If at all times ¢ the position and velocity vectors of a moving
particle satisfy v(¢) = 2r(t), and if r(0) = rg, find r(s) and
the acceleration a(z). What is the path of motion?

Verify that r = rg cos(wt) + (Vo/w) sin(wt) satisfies the
initial-value problem

d*r 5

— = —o'r, ' (0) = vg,
dt?

r(0) =rg.

(It is the unique solution.) Describe the path r(¢). What is
the path if rp is perpendicular to vo?
(Free fall with air resistance) A projectile falling under

gravity and slowed by air resistance proportional to its speed
has position satisfying

d?r K dr
AT ko
a5 Ty

where ¢ is a positive constant. If r = rg and dr/dt = vy at
time ¢ = 0, find r(¢). (Hint: let w = e’ (dr/dt).) Show that
the solution approaches that of the projectile problem given
in this section as ¢ — 0.

Many interesting problems in mechanics involve the differentiation of vector func-
tions. This section is devoted to a brief discussion of a few of these.

Motion Involving Varying Mass

The momentum p of a moving object is the product of its (scalar) mass m and its
(vector) velocity v; p = mv. Newton’s Second Law of Motion states that the rate
of change of momentum is equal to the external force acting on the object:

F = i—l; = %(mv)

It is only when the mass of the object remains constant that this law reduces to the
more familiar F = ma. When mass is changing you must deal with momentum
rather than acceleration.
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m (The changing velocity of a rocket) A rocket accelerates by

burning its onboard fuel. If the exhaust gases are ejected with constant velocity
v, relative to the rocket, and if the rocket ejects p% of its initial mass while its
engines are firing, by what amount will the velocity of the rocket change? Assume
the rocket is in deep space so that gravitational and other external forces acting on
it can be neglected.

Solution Since the rocket is not acted on by any external forces (i.e., F = 0),
Newton’s law implies that the total momentum of the rocket and its exhaust gases
will remain constant. At time ¢ the rocket has mass m(f) and velocity v(z). At
time t + At the rocket’s mass is m + Am (where Am < 0), its velocity is v + Av,
and the mass —Am of exhaust gases has escaped with velocity v + v, (relative to
a coordinate system fixed in space). Equating total momenta at ¢ and # + At we
obtain

(m + Am)(v + AV) + (—=Am)(v + v,) = mv.

Simplifying this equation and dividing by At gives

Am
At

Vea

(m + Am) Av
" At
and, on taking the limit as Ar — 0,

dv _ dm
mar T Al

Suppose that the engine fires from ¢t = 0 to t = 7. By the Fundamental Theorem
of Calculus, the velocity of the rocket will change by

(T) — v(0) /T A (/T Ldm
v(T) —v(0) = —dt = - .
o dt o mdt v

= (inm(T) - lnm(O))Ve - —ln(nnz((g))) V.

Since m(0) > m(T), we have ln(m 0/ m(T)) > 0 and, as was to be expected, the
change in velocity of the rocket is in the opposite direction to the exhaust velocity
v.. If p% of the mass of the rocket is ejected during the burn, then the velocity of
the rocket will change by the amount —v, In(100/(100 — p)).

B

Remark 1t is interesting that this model places no restriction on how great a
velocity the rocket can achieve, provided that a sufficiently large percentage of its
initial mass is fuel. See Exercise 1 at the end of the section.

Circular Motion

The angular speed €2 of a rotating body is its rate of rotation measured in radians per
unit time. For instance, a lighthouse lamp rotating at a rate of three revolutions per
minute has an angular speed of £2 = 67 radians per minute. It is useful to represent
the rate of rotation of a rigid body about an axis in terms of an angular velocity
vector rather than just the scalar angular speed. The angular velocity vector, §2, has
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Figure 11.4 Rotation with angular
velocity £2: v = 2xr

magnitude equal to the angular speed, Q, and direction along the axis of rotation
such that if the extended right thumb points in the direction of 2, then the fingers
surround the axis in the direction of rotation.

If the origin of the coordinate system is on the axis of rotation, and r = r(z) is
the position vector at time ¢ of a point P in the rotating body, then P moves around
a circle of radius D = |r(z)| sin @, where  is the (constant) angle between {2 and
r(t). (See Figure 11.4.) Thus, P travels a distance 27 D in time 27/€2, and its
linear speed is

distance _ 2n D
time  27m/Q

= QD = |2||r(z)|sin0 = |2Xr(t)].

Since the direction of {2 was defined so that §2 X r(¢) would point in the direction
of motion of P, the linear velocity of P at time ¢ is given by

dr P o> o il i
= V() *-*er(f) -

The position vector r(¢) of a moving particle P satisfies the initial-
value problem

I ixr()
dt
r©) =i + 3j.

Find r(¢) and describe the motion of P.

Solution There are two ways to solve this problem. We will do it both ways.

Method 1. By the discussion above, the given differential equation is consistent
with rotation about the x-axis with angular velocity 2i, so that the angular speed is
2 and the motion is counterclockwise as seen from far out on the positive x-axis.
Therefore, the particle P moves on a circle in a plane x = constant and centred on
the x-axis. Since P is at (1, 3, 0) at time ¢t = 0, the plane of motion is x = 1 and
the radius of the circle is 3. Therefore, the circle has a parametric equation of the
form

r =i+ 3cos(ar)j + 3sin(rr)k.

P travels once around this circle (27 radians) in time ¢t = 27 /A, so the angular
speed is A. Therefore, A = 2 and the motion of the particle is given by

r =i+ 3cos(20)j + 3sin(2H)k.

Method II. Break the given vector differential equation into components:

dx dy dz
ax. 4. et o . Ca oK) = 24
dtl+dt"+dt IX(xi+ yj+ zk) 2z + 2yk

d d d
X _o B z_

- = U, - s _—_2
dt dt ¢ dt J
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The first equation implies that x = constant. Since x(0) = 1, we have x(¢) = 1
for all ¢. Differentiate the second equation with respect to ¢ and substitute the third
equation. This leads to the equation of simple harmonic motion for y,

d>y dz
L= 2= =4y,
dt? dt Y

for which a general solution is

y = A cos(2t) + Bsin(2t).
Thus, z = —%(dy/a’t) = Asin(2t) — B cos(2t). Since y(0) = 3 and z(0) = 0, we
have A = 3 and B = 0. Thus the particle P travels counterclockwise around the
circular path

r =i+ 3cos(21)j + 3sin(2H)k

in the plane x = 1 with angular speed 2.
=

Remark Newton’s Second Law states that F = (d/dt)(mv) = dp/dt, where
p = mv is the (linear) momentum of a particle of mass m moving under the
influence of a force F. This law may be reformulated in a manner appropriate for
describing rotational motion as follows. If r(¢) is the position of the particle at time
t, then, since vXv =0,

d d d
E(rxp) = E(rx(mv)) =vX({mv) +rX g;(mv) =rxF.

The quantities H = r x (mv) and T = r X F are, respectively, the angular momentum
of the particle about the origin and the torque of F about the origin. We have shown
that

dH
dt’

the torque of the external forces is equal to the rate of change of the angular
momentum of the particle. This is the analogue for rotational motion of F = dp/dt.

Rotating Frames and the Coriolis Effect

The procedure of differentiating a vector function by differentiating its components
is valid only if the basis vectors themselves do not depend on the variable of
differentiation. In some situations in mechanics this is not the case. For instance, in
modelling large-scale weather phenomena the analysis is affected by the fact that a
coordinate system fixed with respect to the earth is, in fact, rotating (along with the
earth) relative to directions fixed in space.

In order to understand the effect that the rotation of the coordinate system
has on representations of velocity and acceleration, let us consider two Cartesian
coordinate frames (i.e., systems of axes with corresponding unit basis vectors), a
“fixed” frame with basis {I, J, K}, not rotating with the earth, and a rotating frame
with basis {i, j, k} attached to the earth and therefore rotating with the same angular
speed as the earth, namely, /12 radians/hour. Let us take the origin of the fixed
frame to be at the centre of the earth, with K pointing north. Then the angular
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moving object
r

Py
R observer
Ry
centre of the earth
Figure 11.5 Position vectors

relative to the fixed and rotating frames

velocity of the earth is 2 = (7/12)K. The fixed frame is being carried along with
the earth in its orbit around the sun, but it is not rotating with the earth, and, since
the earth’s orbital rotation around the sun has angular speed only 1/365th of the
angular speed of its rotation about its axis, we can ignore the much smaller effect
of the motion of the earth along its orbit.

Let us take the origin of the rotating frame to be at the location of an observer
on the surface of the earth, say at point P, with position vector Ry with respect to
the fixed frame.! Assume that P, has colatitude ¢ (the angle between Ry and K)
satisfying 0 < ¢ < 7, so that Py is not at either the north pole or the south pole.
Let us assume that i and j point, respectively, due east and north at Py. Thus, k
must point directly upward there. (See Figure 11.7 below.)

Since each of the vectors i, j, k, and Ry is rotating with the earth (with angular
velocity £2), we have, as shown earlier in this section,

di dj dk dRy

— =N2xi, —=02Xj, — =02xKk, nd —— = 2XRy.

dr Yo Yo e Ro
Any vector function can be expressed in terms of either basis. Let us denote by
R(z), V(¢), and A(r) the position, velocity, and acceleration of a moving object
with respect to the fixed frame, and by r(¢), v(¢), and a(¢) the same quantities with
respect to the rotating frame. Thus,

R=XI+YJ+ZK r = xi+ yj+ k
dX. dy. dz dx, dy, dz

V = ——I _— ——K = —i —ij —_k
FTRREP TR T vVEatttad Tt
&?x_ dY . d*z d’x, d’y, d%z

A= 214205422 Lt T 1
'ttt A=t e T an

How are the rotating-frame values of these vectors related to the fixed-frame values?
Since the origin of the rotating frame is at Ry, we have (see Figure 11.5)

R:Ro—f—l’.

When we differentiate with respect to time, we must remember that Ry, i, j, and k
a]l depend on time. Therefore,

_d_R_@+dxi+ di+dy,+ dj+dzk+ dk
T dt TR T TR R R TR
=v4+ 2XRo+x2Xi+yN2xj+z2xk

=v+ 2%XRg+ 2Xr

=v+ 2x%R.
Similarly,

—dV—-d(+.Q><R)

T ar o ar
d’x, dxdi d%., dydj d*z dz dk dR
et aatad et @ Y aa T
=a+ 2xv+ 2x(V)
=a+202xv+ 2X(2xR).

1 The author is grateful to his colleague, Professor Lon Rosen, for suggesting this approach

to the analysis of the rotating frame.
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The term 242 X v is called the Coriolis acceleration, and the term 2% (§2xR) is
called the centripetal acceleration.

Suppose our moving object has mass m and is acted on by an external force F.
By Newton’s Second Law,

F=mA =ma+2m2xv+m2xX(2xR),

or, equivalently,
F
a=— —202Xv— 2xX(2xR).
m

To the observer on the rotating earth, the object appears to be subject to F and to
two other forces, a Coriolis force, whose value per unit mass is —2§2Xv, and a
centrifugal force, whose value per unit mass is —§2 X (£2xR). The centrifugal
and Coriolis forces are not “real” forces acting on the object. They are fictitious
forces that compensate for the fact that we are measuring acceleration with respect
to a frame that we are regarding as fixed, although it is really rotating and hence
accelerating.

Observe that the centrifugal force points directly away from the polar axis of
the earth. It represents the effect that the moving object wants to continue moving
in a straight line and “fly off” from the earth rather than continuing to rotate along
with the observer. This force is greatest at the equator (where §2 is perpendicular
to R), but it is of very small magnitude: |£2|2|Ry| =~ 0.003g.

The Coriolis force is quite different in nature from the centrifugal force. In
particular, it is zero if the observer perceives the object to be at rest. It is perpen-
dicular to both the velocity of the object and the polar axis of the earth, and its
magnitude can be as large as 2|£2||v| and, in particular, can be larger than that of
the centrifugal force if |v] is sufficiently large.

m (Winds around the eye of a storm) The circulation of winds
around a storm centre is an example of the Coriolis effect. The eye of a storm is an
area of low pressure sucking air toward it. The direction of rotation of the earth is
such that the angular velocity £2 points north and is parallel to the earth’s axis of

rotation. At any point P on the surface of the earth we can express §2 as a sum of
tangential (to the earth’s surface) and normal components (see Figure 11.6(a)),

£2(P) = 27 (P) + 2y (P).

If P is in the northern hemisphere, £2y(P) points upward (away from the centre
of the earth). At such a point the Coriolis “force” C = —2£2(P) X v on a particle
of air moving with horizontal velocity v would itself have horizontal and normal
components

C=-2027xv-202yxv=Cy+Cr.
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Figure 11.6

(a) Tangential and normal
components of the angular
velocity of the earth in the

northern and southern hemispheres

(b) In the northern hemisphere the
tangential Coriolis force deflects

winds to the right of the path

toward the low-pressure area L so
the winds move counterclockwise

around the centre of L

Figure 11.7
frames

The fixed and local

Vector Functions and Curves

S

(b)

The normal component of the Coriolis force has negligible effect, since air is not
free to travel great distances vertically. However, the tangential component of
the Coriolis force, C; = —282y X v is 90° to the right of v (i.e., clockwise from
v). Therefore, particles of air that are being sucked toward the eye of the storm
experience Coriolis deflection to the right and so actually spiral into the eye in a
counterclockwise direction. The opposite is true in the southern hemisphere, where
the normal component §2 is downward (into the earth). The suction force F, the
velocity v, and the component of the Coriolis force tangential to the earth’s surface,
Cy, are shown at two positions on the path of an air particle spiralling around a

low-pressure area in the northern hemisphere in Figure 11.6(b). -

Remark Strong winds spiralling inward around low-pressure areas are called
cyclones. Strong winds spiralling outward around high-pressure areas are called
anticyclones. The latter spiral counterclockwise in the southern hemisphere and
clockwise in the northern hemisphere. The Coriolis effect also accounts for the
high-velocity eastward-flowing jet streams in the upper atmosphere at midlatitudes
in both hemispheres, the energy being supplied by the rising of warm tropical air
and its subsequent moving toward the poles.




SECTION 11.2:  Some Applications of Vector Differentiation 665

The relationships between the basis vectors in the fixed and rotating frames
can be used to analyze many phenomena. Recall that Ry makes angle ¢ with K.
Suppose the projection of Ry onto the equatorial plane (containing I and J) makes
angle 6 with I as shown in Figure 11.7. Careful consideration of that figure should
convince you that

i=—sin6I+cos6J
j= —cos¢cosfI — cos¢sinBJ + sin gK
k = sin¢ cos 01 + sin ¢ sin6J + cos ¢K.

Similarly, or by solving the above equations for I, J, and K,

I = —sinfi — cos ¢ cosfj + sin ¢ cos fk
J = cos6i — cos ¢ sin 6j + sin ¢ sin Ok
K = sin ¢j + cos k.

Note that as the earth rotates on its axis, ¢ remains constant while ¢ increases at
(7 /12) radians/hour.

S E1 1Nl Suppose that the direction to the sun lies in the plane of I and K,
and makes angle o with I. Thus, the sun lies in the direction of the vector

S =cosol +sinoK.

(o = 0 at the March and September equinoxes and ¢ ~ 23.3° and —23.3° at the
June and December solstices.) Find the length of the day (the time between sunrise
and sunset) for an observer at colatitude ¢.

Solution The sun will be “up” for the observer if the angle between S and k does
not exceed 7r/2, that is, if S e k > 0. Thus, daytime corresponds to

cos o sing cos6 + sino cos¢ > 0,

. tano )
or, equivalently, cos 6 > — W Sunup and sundown occur where equality occurs,
an

namely, when

t
6 =6 = tcos”! (— anor)
tan ¢

if such values exist. (They will existif¢p > o > Qorif r — ¢ > —o > 0.) In this
case, daytime for the observer lasts

26, 24 t
- x 24 = == cos™! <— ana) hours.
i1

2m tan

For instance, on June 21st at the Arctic Circle (so ¢ = o), daytime lasts
(24/m) cos~1(—1) = 24 hours.
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lExercises 11.2

1. What fraction of its total initial mass would the rocket In what direction does it seem to the observer to be moving?
considered in Example | have to burn as fuel in order to From the observer’s point of view, what is the approximate
accelerate in a straight line from rest to the speed of its own value of the Coriolis force acting on the satellite?
exhaust gases? to twice that speed? * 6. Repeat the previous exercise for an observer at a latitude of

* 2. When run at maximum power output, the motor in a 45° in the northern hemisphere.
self-propelled tank car can accelerate the full car (mass # 7. Describe the tangential and normal components of the
M kg) along a horizontal track at @ m/s2. The tank is full at Coriolis force on a particle moving with horizontal velocity
time zero but the contents pour out of a hole in the bottom at v at (a) the north pole, (b) the south pole, and (c) the equator.
rate k kg/s thereafter. If the car is at rest at time zero and full In general, what is the effect of the normal component of the
forward power is turned on at that time, how fast will it be Coriolis force near the eye of a storm?

i i k i ? .
moving at any time f before the tank is empty * 8. (The location of sunrise and sunset) Extend the argument

% 3. Solve the initial-value problem in Example 4 to determine where on the horizon of the
d observer at Py the sun will rise and set. Specifically, if u is
a_ kxr, r(0) =i+ k. the angle between j and S (the direction to the sun) at
dt sunrise or sunset, show that
Describe the curve r = r(¢). .
sing
4 4. An object moves so that its position vector r(¢) satisfies cos b = Sng
in
dr b
dr ax (r(t) - ) For example, if 0 = 0 (the equinoxes), then & = 7/2 at all
colatitudes ¢; the sun rises due east and sets due west on
and r(0) = ro. Here, a, b, and ry are given constant vectors those days.
with a # 0. Describe the path along which the object

9. Vancouver, Canada, has latitude 49.2° N, so its colatitude is
40.8°. How long is the sun visible at Vancouver on June
The Coriolis effect 21st? Or rather, how long would it be visible if it weren’t
raining and if there were not so many mountains around? At
what angle away from north would the sun rise and set?

moves.

* 5. A satellite is in a low, circular, polar orbit around the earth,
(i.e., passing over the north and south poles). It makes one
revolution every two hours. An observer standing on the 10. Repeat the previous exercise for Umed, Sweden (latitude
earth at the equator sees the satellite pass directly overhead. 63.5° N).

In this section we will consider curves as geometric objects rather than as paths of
moving particles. Everyone has an intuitive idea of what a curve is, but it is difficult
to give a formal definition of a curve as a geometric object (i.e., as a certain kind of
set of points) without involving the concept of parametric representation. We will
avoid this difficulty by continuing to regard a curve in 3-space as the set of points
whose positions are given by the position vector function

r=r) =xOi+yOj +2(0k  a<t<bh.

However, the parameter ¢ need no longer represent time, or any other specific
physical quantity.

Curves can be very pathological. For instance, there exist continuous curves
that pass through every point in a cube. It is difficult to think of such a curve as a
one-dimensional object. In order to avoid such strange objects we assume hereafter
that the defining function r(¢) has a continuous first derivative, dr/dt, which we
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Figure 11.8 Three parametrizations

of the semicircle C are given in
Example 1
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will continue to call “velocity” and denote by v(z) by analogy with the physical
case where ¢ is time. (We also continue to call v(#) = |v(r)| the “speed.”) As we
will see later, this implies that the curve has an arc length between any two points
corresponding to parameter values #; and tp; if #; < 5, this arc length is

/zv(z)dt=/2|v(t)|dt=/2

Frequently we will want r(¢) to have continuous derivatives of higher order. When-
ever needed, we will assume that the “acceleration”, a(t) = d’r/dt?, and even the
third derivative, d3r/dt3, are continuous. Of course, most of the curves we en-
counter in practice have parametrizations with continuous derivatives of all orders.

dr
— | dt.
dz‘

It must be recalled, however, that no assumptions on the continuity of derivatives
of the function r(¢) are sufficient to guarantee that the curve r = r(f) is a “smooth”
curve. It may fail to be smooth at a point where v = 0. (See Example 1 in
Section 11.1.) We will show in the next section that if, besides being continuous,
the velocity vector v(¢) is never the zero vector, then the curve r = r(¢) is smooth
in the sense that it has a continuously turning tangent line.

Although we have said that a curve is a set of points given by a parametric
equation r = r(z), there is no unique way of representing a given curve paramet-
rically. Just as two cars can travel the same highway at different speeds, stopping
and starting at different places, so too can the same curve be defined by different
parametrizations; a given curve can have infinitely many different parametrizations.

m Show that each of the vector functions

r;(¢) =sinti+ costj, (—m/2 <t <m/2),
() = —1D)i+ V2t — 2], 0<tr<2), and
() =tv/2 - 12i+ (1 - 3], (-l<t<1

all represent the same curve. Describe the curve.

Solution All three functions represent points in the xy-plane. The function ry (¢)
starts at the point (—1, 0) with position vector r; (—m/2) = —i and ends at the point
(1, 0) with position vector i. It lies in the half of the x y-plane where y > 0 (because
cost > O for (—m/2 <t < m/2)). Finally, all points on the curve are at distance 1
from the origin:

[ri(£)] = v/ (sint)? + (cost)? = 1.

Therefore, r|(f) represents the semicircle y = +/1 — x2 in the xy-plane traversed
from left to right.

The other two functions have the same properties: both graphs lie in y > 0,

r(0) = —i, rn2) =i, M=V —1)2+2t—12 =1,
r3(—1) = —i, r3(1) = i, |r3(t)| — /t2(2 — t2) + (1 _ t2)2 —1.

Thus all three functions represent the same semicircle (see Figure 11.8). Of course,
the three parametrizations trace out the curve with different velocities.




668 CHAPTER 11 Vector Functions and Curves

t=qa. t=b

)

Figure 11.9 Curves C; and C3 are

t=u. t=b

non-self-intersecting

Curves (7 and C4 intersect themselves
Curves C| and C; are not closed
Curves C3 and C4 are closed

Curve (3 is a simple closed curve

T X244yt =4

y

v x+2y+47=4

Figure 11.10 The curve of

intersection of an oblique plane and an
elliptic cylinder

The curve r = r(t), (@ < t < b) is called a closed curve if r(a) = r(b), that is, if
the curve begins and ends at the same point. The curve C is non-self-intersecting
if there exists some parametrization r = r(¢), (¢ <t < b), of C that is one-to-one
except that the endpoints could be the same:

ri))=r(h) a<h<h<b ==ti=a and tH, =D>,.

Such a curve can be closed, but otherwise does not intersect itself; it is then called
a simple closed curve. Circles and ellipses are examples of simple closed curves.
Every parametrization of a particular curve determines one of two possible orien-
tations corresponding to the direction along the curve in which the parameter is
increasing. Figure 11.9 illustrates these various concepts. All three parametriza-
tions of the semicircle in the Example 1 orient the semicircle clockwise as viewed
from a point above the xy-plane. This orientation is shown by the arrowheads on the
curve in Figure 11.8. The same semicircle could be given the opposite orientation
by, for example, the parametrization

r(z) = costi+ sintj, O0<t<m.

Parametrizing the Curve of Intersection of Two Surfaces
Frequently a curve is specified as the intersection of two surfaces with given Carte-
sian equations. We may want to represent the curve by parametric equations. There
is no unique way to do do this, but if one of the given surfaces is a cylinder parallel
to a coordinate axis (so its equation is independent of one of the variables) we can
begin by parametrizing that surface. The following examples clarify the method.

Parametrize the curve of intersection of the plane x + 2y 44z =4
and the elliptic cylinder x2 + 4y? = 4.

Solution We begin with the equation x? + 4y? = 4, which is independent of z.
It can be parametrized in many ways; one convenient way is

x = 2cost, y = sint, O <t =<2m).

The equation of the plane can then be solved for z, so that z can be expressed in
terms of ¢:

1 1
=-@ld-x—-2y)=1— = int).
z 4( X y) 2(cost + sinf)

Thus, the given surfaces intersect in the curve (see Figure 11.10)

cost + sint

r=2costi+sintj+(1— 5

)k 0 =<t <2m).
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m Find a parametric representation of the curve of intersection of the
two surfaces

24+y+z=2 and xy+z=1.

Solution Here, neither given equation is independent of a variable, but we can
obtain a third equation representing a surface containing the curve of intersection
of the two given surfaces by subtracting the two given equations to eliminate z:

4y —xy=1.

This equation is readily parametrized. If, for example, we let x = ¢, then

2

1—1¢

Pry(l—1=1, S0 y= =1+1.

Either of the given equations can then be used to express z in terms of ¢:
z=1l—xy=1—td+)=1—1t—1¢%

Thus, a possible parametrization of the curve is

r=ti+A+0j+ 1A -t -1k

Of course, this answer is not unique. Many other parametrizations can be found for
the curve, providing orientations in either direction.

Arc Length

We now consider how to define and calculate the length of a curve. Let C be a
bounded, continuous curve specified by

r=r(), a<t<h.
Subdivide the closed interval [a, b] into n subintervals by points
a=h<li<bh<: -<t_] <t,=b.

The points r; = r(t;), (0 < i < n), subdivide C into n arcs. If we use the chord
length |r; — r;_;] as an approximation to the arc length between r;_; and r;, then
the sum

n

Sp= Y It =1y

i=l

approximates the length of C by the length of a polygonal line. (See Figure 11.11.)
Evidently, any such approximation is less than or equal to the actual length of C.
We say that C is rectifiable if there exists a constant K such that s, < K for every
n and every choice of the points #. In this case, the completeness axiom of the real
number system assures us that there will be a smallest such number K. We call this
smallest K the length of C and denote it by s.
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Figure 11.11 A polygonal
approximation to a curve C. The length
of the polygonal line cannot exceed the
length of the curve. In this figure the
points on the curve are labelled with
their position vectors, but the origin and
these vectors are not themselves shown.

T
0 T;

Let Af; =1t; —t;_1 and Ar; = r; — r;_1. Then s, can be written in the form

n

=)

i=1

AI‘,‘
At

At;.

If r(¢) has a continuous derivative v(¢), then

In kinematic terms, this formula states that the distance travelled by a moving
particle is the integral of the speed.

Remark Although the above formula is expressed in terms of the parameter ¢, the
arc length, as defined above, is a strictly geometric property of the curve C. It is
independent of the particular parametrization used to represent C. See Exercise 27
below.

If s (¢) denotes the arc length of that part of C corresponding to parameter values
in [a, t], then

ds

o= % /a v(t)dt = v(s),

so that the arc length element for C is given by

The length of C is the integral of these arc length elements; we write

b
/ds = length of C =f v(t) dt.
C a

Several familiar formulas for arc length follow from the above formula by using
specific parametrizations of curves. For instance, the arc length element ds for the
Cartesian plane curve y = f(x) on [a, b] is obtained by using x as parameter; here,
r=xi+ f(x)jsov=i-+ f/(x)jand
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Similarly, the arc length element ds for a plane polar curve » = g(6) can be
calculated from the parametrization

r(0) = g(0) cosBi+ g(8)sinbj.

Itis

ds = ‘/ (g(e))2 + (,gf(a))2 de.

STETG TN M Find the length s of that part of the circular helix

Z

r=acostitasintj+btk

between the points (a, 0, 0) and (a, 0, 27b).

(@.0.27b) Solution This curve spirals around the z-axis, rising as it turns. (See Figure 11.12.)

It lies on the surface of the circular cylinder x> + y*> = a®. We have

y dr
V= —
dt

v =+a?+ b2,

so that in terms of the parameter ¢ the helix is traced out at constant speed. The
required length s corresponds to parameter interval [0, 27r]. Thus,

= —a sinti+acostj+ bk

Figure 11.12 The helix
X =acost 2 2m

) s = v(t)dt = var+b2dt =2mva? + b2
y =asm¢ 0 0
z=bt

Piecewise Smooth Curves

As observed earlier, a parametric curve C given by r = r(¢) can fail to be smooth
at points where dr/dt = 0. If there are finitely many such points, we will say that
the curve is piecewise smooth.

In general, a piecewise smooth curve C consists of a finite number of smooth
arcs, Cy, Cy, . .., Ci, as shown in Figure 11.13.

C ri(b1) = r2{az)

Figure 11.13 A piecewise smooth

curve ri(a1)
In this case we express C as the sum of the individual arcs:
C=C+C+ -+
Each arc C; can have its own parametrization

r=ri(0), (a;i =t < by),
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where v; = dr; /dt # 0 for aq; <t < b;. The fact that ;11 must begin at the point
where C; ends requires the conditions

ric(ai) =1;(by) forl <i <k—1

If also ry(by) = r(ay), then C is a closed piecewise smooth curve.

The length of a piecewise smooth curve C = C; + Cz + - - - + Cy is the sum of
the lengths of its component arcs:

dl','

dt.
dt

kK pb
length of C = Z/
i=1 Yadi

The Arc-Length Parametrization

The selection of a particular parameter in terms of which to specify a given curve
will usually depend on the problem in which the curve arises; there is no one “right
way” to parametrize a curve. However, there is one parameter that is “natural” in
that it arises from the geometry (shape and size) of the curve itself and not from any
particular coordinate system in which the equation of the curve is to be expressed.
This parameter is the arc length measured from some particular point (the initial
point) on the curve. The position vector of an arbitrary point P on the curve can be
specified as a function of the arc length s along the curve from the initial point Py
to P,

r = r(s).

This equation is called an arc-length parametrization or intrinsic parametriza-
tion of the curve. Since ds = v(t) dt for any parametrization r = r(z), for the
arc-length parametrization we have ds = v(s)ds. Thus v(s) = 1, identically; a
curve parametrized in terms of arc length is traced at unit speed. Although it is
seldom easy (and usually not possible) to find r(s) explicitly when the curve is given
in terms of some other parameter, smooth curves always have such parametriza-
tions (see Exercise 28 below), and they will prove useful when we develop the
fundamentals of the differential geometry for 3-space curves in the next section.

Suppose that a curve is specified in terms of an arbitrary parameter . If the arc
length over a parameter interval [fg, ],

s:s(t):/

can be evaluated explicitly, and if the equation s = s(¢) can be explicitly solved for
t as a function of s (t = t(s)), then the curve can be reparametrized in terms of arc
length by substituting for ¢ in the original parametrization:

dr,

d
Er(f)

r = r((s)).
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m Parametrize the circular helix

r(s) =a cos(

r = acosti+asintj+ btk

in terms of the arc length measured from the point (a, 0, 0) in the direction of
increasing t. (See Figure 11.12.)

Solution The initial point corresponds to t+ = 0. As shown in Example 4, we

have ds /dt = /a? + b2, so
t
s =s(t) =/ var+b%dt =+/a?+ b*t.
0

Therefore, t = s/+/a% + b? and the arc-length parametrization is

bs

5 N
~——— Ji+asin + k
Va2 + b2) («/a2 + b2>J Va? +b?

i Exercises 11.3

In Exercises 14, find the required parametrization of the first

quadrant part of the circular arc x2 + y2 = a2

1. In terms of the y-coordinate, oriented counterclockwise
2. In terms of the x-coordinate, oriented clockwise

3. Interms of the angle between the tangent line and the
positive x-axis, oriented counterclockwise

4, In terms of arc length measured from (0, a), oriented
clockwise

5. The cylinders z = x2 and z = 4y intersect in two curves,
one of which passes through the point (2, —1,4). Find a
parametrization of that curve using ¢ = y as parameter.

6. The plane x + v + z = 1 intersects the cylinder z = x? in a
parabola. Parametrize the parabola using t = x as

parameter.

In Exercises 7-10, parametrize the curve of intersection of the
given surfaces. Note: the answers are not unique.

7.x°+y2=9andz=x+y

8.z=4/1-x2—yZandx+y=1
9. z=x2+y?and2x —4y —z—-1=0

1. yc+x=landxz—x =1

11. The plane z = 1 + x intersects the cone z2 = x2 + y? ina

parabola. Try to parametrize the parabola using as
parameter: (a) t = x, (b) t = y, and (c) t = z. Which of
these choices for ¢ leads to a single parametrization that
represents the whole parabola? What is that
parametrization? What happens with the other two choices?

13.

14.

15.

16.

17.

18.

19.

. The plane x 4+ y + z = 1 intersects the sphere

x2 + y? + 22 = lin a circle C. Find the centre r( and radius
r of C. Also find two perpendicular unit vectors ¥, and ¥
parallel to the plane of C. (Hint: to be specific, show that

¥1 = (i — j)/+/2 is one such vector; then find a second that
is perpendicular to ¥q.) Use your results to construct a
parametrization of C.

Find the length of the curve r = ¢2i + 12§ + 1’k from t = 0
tor=1.

For what values of the parameter A is the length s(7') of the
curver =i+ A%+ 2k, (0 <t <T) given by
s(T)=T+T3?

Express the length of the curve r = at?i+ bt j+ clnrk,
(1 <t < T) as a definite integral. Evaluate the integral if
b* = 4dac.

Describe the parametric curve C given by
X = acostsint, y=asin2t, z = bt.

What is the length of C betweent =0 andr =T > 0?

Find the length of the conical helix
r=rtcosti+tsintj+tk, (0 <t <2x). Why is the curve
called a conical helix?

Describe the intersection of the sphere x2 4 y2 + z2 = 1 and

the elliptic cylinder x% 4+ 2z2 = 1. Find the total length of
this intersection curve.

Let C be the curve x = ¢ cost, y = €' sint, 7 = t between
t = 0and ¢ = 2. Find the length of C.
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20.

21.
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Find the length of the piecewise smooth curve r = 31+ 13,
(—1 <1 <2).

Describe the piecewise smooth curve C = C| 4 Cy, where
ri(n) =ti+1j, (0 <t < D,andry(r) = (1 — )i+ (1 +1)j,
O<r<).

A cable of length L and circular cross-section of radius a is
wound around a cylindrical spool of radius b with no
overlapping and with the adjacent windings touching one
another. What length of the spool is covered by the cable?

In Exercises 23-26, reparametrize the given curve in the same
orientation in terms of arc length measured from the point where

1 =0.
23. r = Ati+ Btj + Ctk, (A24+ B2+ C%2>0
2. r=ci+V2j— e’k
*25.r:acos3ti+asin3tj+b0052tk, (Oftf%)
%26, T = 3fcosti+3tsintj+2v27%k

%27

L Lletr=r1(t),(a <t <b),andr =r2(u), (c <u <d), be
two parametrizations of the same curve C, each one-to-one
on its domain and each giving C the same orientation (so that
ri(a) =ry(c) and r;(b) = ra(d)). Then for each ¢ in [a, b]

# 28,

there is a unique u = u(t) such that r(u(t)) = r((¢). Show

that
d
d
dtzf du,
c |d

il‘ ®)
dt !

b
/ —r2(u)
a U

and thus that the length of C is independent of
parametrization.

If the curve r = r(r) has continuous, nonvanishing velocity
v(t) on the interval [a, b), and if #y is some point in [a, b],
show that the function

1
s =g() 2/ [v(u)l du
Iy

is an increasing function on [a, b] and so has an inverse:
t=g"'(s) &= s=2g0.

Hence, show that the curve can be parametrized in terms of
arc length measured from r(z).

In this section and the next we develop the fundamentals of differential geometry
of curves in 3-space. We will introduce several new scalar and vector functions
associated with a curve C. The most important of these are the curvature and
torsion of the curve, and a right-handed triad of mutually perpendicular unit vectors
forming a basis at any point on the curve, and called the Frenet frame. The curvature
measures the rate at which a curve is turning (away from its tangent line) at any
point. The torsion measures the rate at which the curve is twisting (out of the plane
in which it is turning) at any point.

The Unit Tangent Vector

The velocity vector v(¢) = dr/dt is tangent to the parametric curve r = r(¢) at the
point r(¢) and points in the direction of the orientation of the curve there. Since
we are assuming that v(¢) 0, we can find a unit tangent vector, T (), at r(s) by

dividing v(¢) by its length:

dr
dt

Recall that a curve parametrized in terms of arc length, r = r(s), is traced at unit
speed; v(s) = 1. In terms of arc-length parametrization, the unit tangent vector is

& dr
T(S) = (7.5?.
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Find the unit tangent vector, ’i‘, for the circular helix of Example 4
of Section 11.3, in terms of both ¢ and the arc-length parameter s.
Solution Interms of r we have

r=acosti+asintj+ brk
v(t) = —asinti+acostj+ bk

v(t) = vasin?t + a?cos? t + b2 = Va2 + b2

’i‘(t):— sinzi-+ costj+

a a b
e — —_— ———F——k
/a2+b2 /a2+b2 /a2+b2
In terms of the arc-length parameter (see Example 5 of Section 11.3)

bs

A N
——— )i+ asin j+ k
(\/a2+b2> («/a2+b2)J Va?+b?

r(s) =acos

A dr a s a s
T@)=—=— sin( )i+ cos( )j
)= s va?+b? va?+b? va?+b? Va? 4+ b?

b
+ —k.
va?+b?

Remark If the curve r = r(¢) has a continuous, nonvanishing velocity v(¢), then
the unit tangent vector T(z) is a continuous function of t. The angle 6(¢) between
T(¢) and any fixed unit vector 1 is also continuous in ¢:

6(t) = cos 1 (T(t) e ).

Thus, as asserted previously, the curve is smooth in the sense that it has a contin-
uously turning tangent line. The rate of this turning is quantified by the curvature,
which we introduce now.

Curvature and the Unit Normal

In the rest of this section we will deal abstractly with a curve C parametrized in
terms of arc length measured from some point on it:

r=r(s).

In the next section we return to curves with arbitrary parametrizations and apply the
principles developed in this section to specific problems. Throughout we assume
that the parametric equations of curves have continuous derivatives up to third order
on the intervals where they are defined.

Having unit length, the tangent vector T(s) = dr/ds satisfies T(s) o T(s) = 1.
Differentiating this equation with respect to s we get

- dt
2T(s) e — =0,
ds

so that d’i‘/ds is perpendicular to T(s).
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EFINITION n

Curvature and radius of curvature

The curvature of C at the point r(s) is the length of d T /ds there. It is denoted
by the Greek letter « (kappa):

A

dT

wls) = ds

The radius of curvature, denoted p (the Greek letter rh0) is the reciprocal of
the curvature:

_ 1
,O(S)—Ts)-

As we will see below, the curvature of C at r(s) measures the rate of turning of the
tangent line to the curve there. The radius of curvature is the radius of the circle
through r(s) that most closely approximates the curve C near that point.

According to its definition, x(s) > 0 everywhere on C. If «(s) # 0 we can
divide dT /ds by its length, « (s), and obtain a unit vector N(s) in the same direction.
This unit vector is called the unit principal normal to C at r(s), or, more commonly,
just the unit normal:

at

R 1 dt 4t
ds

Note that N(s) is perpendicular to C at r(s) and points in the direction that T,
and therefore C, is turning. The principal normal is not defined at points where
the curvature « (s) is zero. For instance, a straight line has no principal normal.
Figure 11.14(a) shows Tand Nata point on a typical curve.

m Let a > 0. Show that the curve C given by
SN, {5\,
r=a COS(—)] +a sm(—)J
a a
is a circle in the xy-plane having radius a and centre at the origin and that it is

parametrized in terms of arc length. Find the curvature, the radius of curvature, and
the unit tangent and principal normal vectors at any point on C.

Solution Since

oot =y (o) + (sn(2)) o

C is indeed a circle of radius a centred at the origin in the x y-plane. Since the speed

(SN, SN,
= ’—sm(—)l—i-cos(—)J‘ =1,
a a

dr

ds




Figure 11.14
(a) The unit tangent and principal
normal vectors for a curve
(b) The unit tangent and principal
normal vectors for a circle
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(@) (b)

the parameter s must represent arc length; hence the unit tangent vector is

'i‘(s) = — sin(g)i + cos(g)j.

Therefore,
daTt 1 sy, 1 . /sy,
—_—= ——COS(—)I - - sm(—)_]
ds a a a a

and the curvature and radius of curvature at r(s) are

~

k)= ds

1 1
=, pls)=——=a.
a

k(s)

Finally, the unit principal normal is

N(s) = —cos(%)i — sin(:—l)j = —le-r(s).

Note that the curvature and radius of curvature are constant; the latter is in fact the
radius of the circle. The circle and its unit tangent and normal vectors at a typical
point are sketched in Figure 11.14(b). Note that N points toward the centre of the
circle.

—_n

Remark Another observation can be made about the above example. The position
vector r(s) makes angle 6 = s/a with the positive x-axis; therefore, ’i‘(s) makes
the same angle with the positive y-axis. Therefore, the rate of rotation of T with
respect to s is

dao |
—_— = - =K.
ds a

That is, « is the rate at which T is turning (measured with respect to arc length).
This observation extends to a general smooth curve.



678

CHAPTER 11 Vector Functions and Curves

EOREM e Curvature is the rate of turning of the unit tangent

Letx > O onan interval containing s, and let A9 be the angle between T(s + As)
and T(s), the unit tangent vectors at neighbouring points on the curve. Then

K(s) = hm
radius 1 : nm |—| =1 auu ~ ~
H As—0 ‘ \
. AG A6
k() =1lm |[—| = 9 ~
Figure 11.15 |AT| =~ |A8| for small As—0| As rak A ekt S

values of |As|

The unit tangent T and unit normal N at a point r(s) on a curve AC are regarded
as having their tails at that point. They are perpendicular, and N points in the
direction toward which T(s) turns as s increases. The plane passing through r(s)
and containing the vectors ’i‘(s) and N(s) is called the osculating plane of C at r(s)
(from the Latin osculum, meaning kiss). For a plane curve, such as the circle in
Example 2, the osculating plane is just the plane containing the curve. For more
general three-dimensional curves the osculating plane varies from point to point; at
any point it is that plane which comes closest to containing the part of the curve
near that point. The osculating plane is not properly defined at a point where
k {s) = 0, although if such points are isolated, it can sometimes be defined as a limit
of osculating planes for neighbouring points.

osculating circle at r Still assuming that « (s) #£ 0, let
re(s) = r(s) + p(s)N(s).

For each s the point with position vector r.(s) lies in the osculating plane of C at
r(s), on the concave side of C and at distance p(s) from r(s). It is called the centre
of curvature of C for the pointr(s). The circle in the osculating plane having centre
at the centre of curvature and radius equal to the radius of curvature p(s) is called
the osculating circle for C at r(s). Among all circles that pass through the point
r(s), the osculating circle is the one that best describes the behaviour of C near that
point. Of course, the osculating circle of a circle at any point is the same circle. A

Figure 11.16 An osculating circle typical example of an osculating circle is shown in Figure 11.16.

Torsion and Binormal, the Frenet-Serret Formulas
At any point r(s) on the curve C where T and N are defined, a third unit vector, the
unit binormal B, is defined by the formula

~

=TxN.




Figure 11.17 The Frenet frame
{T,N. B} at some points on C

SECTION 11.4: Curvature, Torsion, and the Frenet Frame 679

Note that B(s) is normal to the osculating plane of C at r(s); if C is a plane curve,
then B is a constant vector, independent of s on any interval where x(s) # 0.
At each point r(s) on C, the three vectors {T N, B} constitute a right-handed
basis of mutually perpendicular unit vectors like the standard basis {i, j. k}. (See
Figure 11.17.) This basis is called the Frenet frame for C at the point r(s). Note
that

~ I\

BxT =Nand NxB =

Slnce 1= B(s) . B(s) then B(s) . (dB/ds) = 0, and dB/ds is perpendicular to
B(s). Also, differentiating B = TxN we obtain
dB 4T dN dN dN

e = L XN4+Tx=— =«NXxN+Tx— =Tx—.
ds a’s>< ><a's RNXN ds ds

Therefore dB /ds is also perpendicular to T. Being perpendicular to both T and B,
dB/ds must be parallel to N. This fact is the basis for our definition of torsion.

Torsion
On any interval where « (s) 7 0 there exists a function 7 (s) such that

- = —7(s)N(s).

The number 7 (s) is called the torsion of C at r(s).

The torsion measures the degree of twisting that the curve exhibits near a point, that
is, the extent to which the curve fails to be planar. It may be positive or negative,
depending on the right-handedness or left-handedness of the twisting. We will
present an example later in this section.

Theorem 2 has an analogue for torsion, for which the proof is similar. It states
that the absolute value of the torsion, |7 (s)|, at point r(s) on the curve C is the rate
of turning of the unit binormal:

= |t

where Ay is the angle between ﬁ(s + As) and ﬁ(s).
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IEETEN  (The circular helix) As observed in Example 5 of Section 11.3,
the parametric equation

I
[aZ + b2’

represents a circular helix wound on the cylinder x2 + y*> = a* and parametrized in
terms of arc length. Assume a > 0. Find the curvature and torsion functions « (s)
and 7 (s) for this helix and also the unit vectors comprising the Frenet frame at any
point r(s) on the helix.

r(s) = acos(cs)i + asin{cs)j + besk, where ¢ =

Solution In Example 1 we calculated the unit tangent vector to be

~

T(s) = —acsin(cs)i + ac cos(cs)j + bck.
Differentiating again leads to

dt ) . g
Is = —ac” cos(cs)i — ac” sin{cs)j,
s

so that the curvature of the helix is

dt

a
¢ = 7 2
a‘*+b

k(s) =

and the unit normal vector is

Ris) = — L )i — sin(cs)j
s) = o) ds cos{cs)i — sin(cs)j.
Now we have
. . . i Jj k
B(s) = T(s)XN(s) = | —acsin(cs) accos(cs) bc
— cos(cs) —sin(cs) O

= be sin(cs)i — be cos(cs)j + ack.
Differentiating this formula leads to

dﬁ 2 . 2 - : 28
i bce cos(cs)i + be” sin(ces)j = —be“N(s).
A

Therefore, the torsion is given by

b

1(s) = —(=bc?) = eyl

_a

Remark Observe that the curvature « (s) and the torsion 7(s) are both constant
(i.e., independent of s) for a circular helix. In the above example, 7 > 0 (assuming
that b > 0). This corresponds to the fact that the helix is right-handed. (See




Figure 11.18 ’i‘ N and fi and their
directions of change
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Figure 11.12 in the previous section.) If you grasp the helix with your right hand so
your fingers surround it in the direction of increasing s (counterclockwise, looking
down from the positive z-axis), then your thumb also points in the axial direction
corresponding to increasing s (the upward direction). Had we started with a left-
handed helix, such as

r=asinti+acostj+ brk, (a,b > 0),

we would have obtained T = —b/(a® + b?).
Making use of the formulas d’i‘/ds = xNand dﬁ/ds = —7N we can calculate

dN/ds as well:

A

dN d . . dB . . dT
— = —BxXT) = —XT+Bx—
ds ds( xD ds>< + xds

= —tNxT +«BxN= —«T+ 7B.

Together, the three formulas

it
g

N
— T LB
ds :

aB .

— =N

ds o

are known as the Frenet—Serret formulas. (See Figure 11.18.) They are of
fundamental importance in the theory of curves in 3-space. The Frenet-Serret
formulas can be written in matrix form as follows:

B ,i, o ',0 g 'i‘
‘ \B 0 -t 0/ \B

Using the Frenet—Serret formulas we can show that the shape of a curve with non-
vanishing curvature is completely determined by the curvature and torsion functions
x(s) and 7(s).

The Fundamental Theorem of Space Curves

Let C; and C, be two curves, both of which have the same nonvanishing curvature
function « (s) and the same torsion function 7 (s). Then the curves are congruent.
That is, one can be moved rigidly (translated and rotated) so as to coincide exactly
with the other.

PROOF We require ¥ # 0 because N and B are not defined where k = 0. Move
(2 rigidly so that its initial point coincides with the initial point of C; and so that
tpe Frenet frames of both curves coincide at that point. Let T}, T,, N, N», By, and
B, be the unit tangents, normals, and binormals for the two curves. Let

f(s) =Ti(s) @ Ta(s) + Ni(s) o Na(s) + By (s) & Bo(s).
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We calculate the derivative of f(s) using the Product Rule and the Frenet—Serret
formulas:

f/(S)z'AI‘IIO’i‘z—}—TIOT/z-FN/] .N2+N10N/2+]§/1.]§2+]§1 Oﬁlz
=KN10T2+KT]0N2—KT10N2+‘[]§10N2—KN1.T2
+‘EN]OI§2—TN] .ﬁg—fﬁloNz
=0.

Therefore f(s) is constant. Since the frames coincide at s = 0, the constant must
be 3:

Ti(s) 0 T2(5) + Ni(s) e Na(s) + B (s)  Ba(s) = 3.

However, each dot product cannot exceed 1 since the factors are unit vectors.
Therefore each dot product must be equal to 1. In particular, T1(s) e T2(s) = 1 for

all s; hence
dl‘] A S dl‘2
15 1(8) 2(s) s

Integrating with respect to s and using the fact that both curves start from the same
point when s = 0, we obtain r;(s) = ry(s) for all s, which is what we wanted to
show.

Remark 1t is a consequence of the above theorem that any curve having nonzero
constant curvature and constant torsion must, in fact, be a circle (if the torsion is
zero) or a circular helix (if the torsion is nonzero). See Exercises 7 and 8 below.

| Exercises 11.4

Find the unit tangent vector 'i'(t) for the curves in Exercises 1-4. 6. Show that if t(s) = O for all s, then the curve r = r(s) is a
Lor=tio 2t2j +35k plane curve. Hint: show that r(s) lies in the plane through
r(0) with normal B(0).
7. Show thatif k (s) = C is a positive constant and 7 (s) = 0 for
all s, then the curve r = r(s) is a circle. Hinz: find a circle

2. r=asinwti+acoswtk

3. r=cosrsinti+sin’1j+costk

4. r=qgcosti+ bsintj+1rk having the given constant curvature. Then use Theorem 3.
5. ShOW 1ha.t if k(s) = O for all 5, then the curve r = r(s) is a 8. Show that if the curvature « (s) and the torsion 7 (s) are both
straight line. nonzero constants, then the curve r = r(s) is a circular helix.

Hint: find a helix having the given curvature and torsion.

ametrizations

The formulas developed above for curvature and torsion as well as for the unit
normal and binormal vectors are not very useful if the curve we want to analyze is
not expressed in terms of the arc-length parameter. We will now consider how to
find these quantities in terms of a general parametrization r = r(t). We will express
them all in terms of the velocity, v(z), the speed, v(z) = |v(¢)|, and the acceleration,
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a(t). First observe that

dr d N
dr_rs F

V=% T asar "
dv dvTHdT
aAa=—=— —_—
dt dt dt

dv. dTds dva .
—T+v— —=—T+vkN
ar T Vasar @ UK

d A A A A ~
vXa= v;{—lt}TxT+ v TxN = v’«B.

Note that B is in the direction of vxa. From these formulas we obtain useful
formulas for T, B, and «:

yxa lvxal

lvxal’ i

T=

< |-

B

There are several ways to calculate N. Perhaps the easiest is

o

N::ﬁ)('i‘. :

Sometimes it be easier t dt _dt ds dt N to calculat
ometumes 1t ma eceasieriouse ——= — — = v— =V O calcuiate
s may ! di dsdi ds F 4

_____ art
dt |’

N 1.dT pdl dT/

The torsion remains to be calculated. Observe that

%? = %(%’i‘—{— vzch>.

This differentiation will produce several terms. The only one that involves B is

the one that comes from evaluating v« (dN/dt) = v*k (dN/ds) = v’k (B — «T).
Therefore,

da . . N
7 AT + uN 4+ v« 7B,

for certain scalars A and u. Since vxXa = v3«B, it follows that
da
(vxa)e 7 (*k)’t = |vxal’r.

Hence

(vXa)e (da/dr)
Tiom e,
tvxal?
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m Find the curvature, the torsion, and the Frenet frame at a general
point on the curve

r=(t+cost)i+ (t —cost)j+ V2sintk.

Describe this curve.

Solution We calculate the various quantities using the recipe given above. First
the preliminaries:

v = (1 —sint)i+ (1 +sint)j + v2costk
a= —costi+ costj— V2sinrk

d
d—?:sinti—sintj—\/icostk
i i k

vxa=|1—sint 1+sinr +2cost

—cost cost —+/2sint

= —\/5(1 + sin )i — ~/2(1 — sin1)j + 2 cos tk
d
(vXa)od—?z— 25int(1+sint)+\/§sint(1—sint)—2«/§c0s2t

=22
v=|v| =\/2+25in2t+2coszt =2
lvxal = /22 + 2sin? 1) + 4cos?t = V8 = 2v/2.

Thus we have

o lvxal _2v2 1

v3 8 2,2
_ (vxa)e(da/dt) 242 |
lvxal? V2?2 242
A v 1 —sint 1 +sint 1
T=-= i j+ — tk
" 2 1+ 3 J+ ﬁcos
. vXa 14 sint 1 —sint 1
B = = — i— j + —costk
lvxal 2 2 174
NN 1 1
N=BXT = ———costi + — costj — sintk.
72 72N

Since the curvature and torsion are both constant (they are therefore constant when
expressed in terms of any parametrization), the curve must be a circular helix by
Theorem 3. 1t is left-handed, since T < 0. By Example 3 in Section 11.4, it is
congruent to the helix

r = acosti+ asintj + btk,

provided that a/(a? + b%) = 1/(2+/2) = —b/(a®> + b*). Solving these equations
gives a = /2 and b = —+/2, so the helix is wound on a cylinder of radius v/2.
The axis of this cylinder is the line x = y, z = 0, as can be seen by inspecting the
components of r(t).




Figure 11.19
roadway

+ —mayN

Banking a curve on a
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(Curvature of the graph of a function of one variable) Find the
curvature of the plane curve with equation y = f(x) at an arbitrary point (x, f(x))

on the curve.
Solution The graph can be parametrized: r = xi + f(x)j. Thus,
v=1i+ f'(x)j,
a= f"(x)j,
vxa= f"(x)k.
Therefore the curvature is
|f" ()l
K(x) = 37
(1+ (@)
|

Tangential and Normal Acceleration

In the formula obtained earlier for the acceleration in terms of the unit tangent and
normal,
a= L% 42,
dt

the term (dv/dt)’i‘ is called the tangential acceleration, and the term vieN is
called the normal or centripetal acceleration. This latter component is directed
toward the centre of curvature and its magnitude is v’k = v?/p. Highway and
railway designers attempt to bank curves in such a way that the resultant of the
corresponding “centrifugal force,” —m(v>/p)N, and the weight, —mgk, of the
vehicle will be normal to the surface at a desired speed.

IEZTEN Banking a curve. A level, curved road lies along the curve y = x2
in the horizontal xy-plane. Find, as a function of x, the angle at which the road
should be banked (i.e., the angle between the vertical and the normal to the surface
of the road) so that the resultant of the centrifugal and gravitational (—mgKk) forces
acting on the vehicle travelling at constant speed vy along the road is always normal
to the surface of the road.

Solution By Example 2 the path of the road, y = x2, has curvature
|d?y /dx?| 2
(1+ (dy/dxy?)’? (1 +4x2)32

The normal component of the acceleration of a vehicle travelling at speed vy along
the road is

2
PAV

— 2 —
ay = Yk = (1+4x2)3/2.

If the road is banked at angle 6 (see Figure 11.19), then the resultant of the centrifugal
force —mayN and the gravitational force —mgK is normal to the roadway provided

ma . 292
tanfg = —N, that 1s, f = tan™! 0

mg g(l +4x2)3/2'




686 CHAPTER 11  Vector Functions and Curves

Remark The definition of centripetal acceleration given above is consistent with
the one that arose in the discussion of rotating frames in Section 11.2. If r(¢) is the
position of a moving particle at time ¢, we can regard the motion at any instant as
being a rotation about the centre of curvature, so that the angular velocity must be
£2 = QB. The linear velocity isv = 2X(r—r,) = vT, so the speed is v = Qp,
and 2 = (v/ p)B. As developed in Section 11.2, the centripetal acceleration is

2 2

v v

2X2X (@ —r)) = N2XV= —BxT=

—N.
o P

Evolutes

The centre of curvature r.(¢) of a given curve can itself trace out another curve as ¢
varies. This curve is called the evolute of the given curve r(r).

S EINEE  Find the evolute of the exponential spiral

r=ae ' costi+ae " sint}j.
Solution The curve is a plane curve so T = 0. We will take a shortcut to the
curvature and the unit normal without calculating v X a. First we calculate

v=ae’ (—(cost + sin#)i — (sint — cos t)j)

d
@ v = 2ae”!
dt

’i‘(t) = 71—5 (—(cost -+ sint)i — (sint — cos t)j)

at 1 4T 1 ((‘m bi o
ds ~ (ds/dt) dt = 2ae* - cos )i = (cost + Smt)’]>
dT 1
k() = |—| = ——.
ds V2ae—t

It follows that the radius of curvature is p(t) = V2ae . Since d’i‘/ds = kN, we
have N = p(dT/ds). The centre of curvature is

re(t) = r(t) + p(ON(t)

dT
=r( I—
O +p Is

= ae"(cost i+ sintj)

1
3 9 . . . .
+ 2a‘e W((smt —cost)i — (cost + sin t)J)
=aqae”’ (sin ti— cos tj)

ot LAY . LAY
=ae (cos(t 2)1—+-sm(t 2)]).

Thus, interestingly, the evolute of the exponential spiral is the same exponential
spiral rotated 90° clockwise in the plane. (See Figure 11.20(a).)

_u
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Figure 11.20

(a) The evolute of an exponential
spiral is another exponential spiral

y
r = ae ' (cos ti + sin tj
ae™'( )] A 5
X
r. = ae”'(sinti — cos tj)
D C
(@) (b)

(b) The shape of a model train track

An Application to Track (or Road) Design

Model trains frequently come with two kinds of track sections, straight and curved.
The curved sections are arcs of a circle of radius R, and the track is intended to be
laid out in the shape shown in Figure 11.20(b); AB and CD are straight, and BC
and DA are semicircles. The track looks smooth, but is it smooth enough?

The track is held together by friction, and occasionally it can come apart as
the train is racing around. It is especially likely to come apart at the points A,
B, C, and D. To see why, assume that the train is travelling at constant speed v.
Then the tangential acceleration, (dv /dt)’i‘, is zero and the total acceleration is just
the centripetal acceleration, a = (v?/ ©)N. Therefore, |a] = 0 along the straight
sections, and |a| = v>*k = v?/R on the semicircular sections. The acceleration is
discontinuous at the points A, B, C, and D, and the reactive force exerted by the
train on the track is also discontinuous at these points. There is a “shock” or “joit”
as the train enters or leaves a curved part of the track. In order to avoid such stress
points, tracks should be designed so that the curvature varies continuously from
point to point.

m Existing track along the negative x-axis and along the ray
y =x — 1, x > 2, is to be joined smoothly by track along the transition curve

y = f(x),0 <x <2, where f(x) is a polynomial of degree as small as possible.
Find f(x) so that a train moving along the track will not experience discontinuous
acceleration at the joins.

Solution The situation is shown in Figure 11.21. The polynomial f(x) must be
chosen so that the track is continuous, has continuous slope, and has continuous
curvature at x = 0 and x = 2. Since the curvature of y = f(x) is

—3/2
e= 11+ e?)

we need only arrange that f, f’, and f” take the same values at x = O and x = 2
that the straight sections do there:
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Figure 11.21 Joining two straight
tracks with a curved track

f0) =0, f© =0, 1) =0,
f@ =1, =1, ") =o0.

These six independent conditions suggest we should try a polynomial of degree 5
involving six arbitrary coefficients:

f(x) = A+ Bx + Cx*> + Dx* + Ex* + Fx°
f'(x) = B +2Cx +3Dx> +4Ex> + 5Fx*
f"(x) =2C + 6Dx + 12Ex* + 20Fx>.

The three conditions at x = 0 imply that A = B = C = 0. Those at x = 2 imply
that

8D+ 16E+ 32F = f(2) =1
12D +32E+ 80F = f'(2) =1
12D + 48E + 160F = f"(2) = 0.

This system has solution D = 1/4, E = —1/16, and F = 0, so we should use

f) =& /4) = (*/16).
=

Remark Road and railroad builders do not usually use polynomial graphs as
transition curves. Other kinds of curves called clothoids and lemniscates are
usually used. (See Exercise 7 in the Review Exercises at the end of this chapter.)

Maple Calculations

Calculations of the sort done in this section for fairly simple curves can become
quite oppressive for more complicated curves. As usual, Maple can relieve us of
much of this burden. The Maple worksheet curve-3d.mws available from the web-
site (www . pearsoned.ca/divisions/text/adams_calc)automatically
calculates the velocity, acceleration, unit tangent, normal, and binormal vectors, and
the curvature and torsion of any given 3-space parametric curve as functions of the
parameter of the curve by implementing the formulas in this section. The worksheet
reads in vecops.def discussed in Section 10.7, so make sure you obtain that file as
well from the same source.

The tricky part in dealing with vector-valued functions that you want to dif-
ferentiate is to define them in such a way that their components are functions. For
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example, suppose you want to construct the function
R = cos(®)i + sin(?)j + k.

The Maple input
> R := t ->» [cos(t), sin(t), tl;

R :=t— > [cos(t), sin(?), ]
will not work, because, although it defines a function whose values are vectors, the
function itself is not considered to be a vector. Thus, the input R[2] (t) does not
lead to the output sin(#) as we would expect, but instead returns the whole vector

R(?). Nor does differentiation of R to produce the velocity vector yield the correct
result.

> R{21(t); V := D(R); V(s);
[cos(t), sin(t), t]
V :=D(R)
D(R)(s)

This is not what we want. We must define R in such a way that its components are
functions rather than just the vector itself being a function. This can be done by

defining x, y, and z separately as functions of 7 (i.e., x := t -> cos(t), and
similar assignments for v and z), and then defining R := [x,y,z], or we can
accomplish the whole thing in one step with the input

> R := [t -> cos(t), t -> sin(t), t -> t];

R :=[cos, sin, t— > ]
Now observe,
> R[2]1(t); V := D(R); V(g)

sin(t)
V := [—sin, cos, 1]

[— sin{s), cos(s), 1]

We can continue to define the acceleration A := D (V) and so on, and construct
the various quantities for the curve by standard vector operations. For instance, the
speed and curvature functions are defined in curve-3d.mws by

> spd := t -> len(V(t));
> curv := t -> simplify(len(V{t) &x A(t))/(spd(t))"3);

The worksheet curve-3d.mws also illustrates the use of the procedure spacecurve
from the plots package to plot the parametric curve.

|Exercises 11.5

Find the radius of curvature of the curves in Exercises 1-4 at the 2. y=cosxatx =0and atx = /2

points indicated. 3. r=2ti+(1/0)j — 2tkat (2,1, ~2)

= 2 — 0 —
L y=x?atx=0andatx =2 4. v = £3i + 1%j + tk at the point where r = 1
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Find the Frenet frames {’i‘, N, ]§} for the curves in Exercises 5-6
at the points indicated.

5. r=ri+%j+2kat(l, 1,2)

6. r=r1i+2j+rkat(1,1,1)
In Exercises 7-8, find the unit tangent, normal, and binormal
vectors, and the curvature and torsion at a general point on the
given curve.

2 3
t t
—j+ —k
2173
9. Find the curvature and torsion of the parametric curve

7. r=1i+ 8. r=¢'(costi+sintj+k)

X =2+\/icosz. y=1-—sint, z=3+4+sint

at an arbitrary point . What is the curve?

10. A particle moves along the plane curve y = sinx in the
direction of increasing x with constant horizontal speed
dx/dt = k. Find the tangential and normal components of

the acceleration of the particle when it is at position x.

11. Find the unit tangent, normal and binormal, and the

curvature and torsion for the curve
r= sintcosti+sin2tj+costk

at the points (i) r =0 and (i) t = 7 /4.
12. A particle moves on an elliptical path in the xy-plane so that
its position at time ¢ is T = a cos ti + bsintj. Find the
tangential and normal components of its acceleration at time
t. At what points is the tangential acceleration zero?

13. Find the maximum and minimum values for the curvature of

the ellipse x = acost, y = bsint, where a > b > 0.

14.
the shape of the curve y = x2, under the influence of the
gravitational force —mgj. The speed of the bead is v as it
passes through the point (1, 1). Find, at that instant, the
magnitude of the normal acceleration of the bead and the
rate of change of its speed.

15. Find the curvature of the plane curve y = ¢* at x. Find the

equation of the evolute of this curve.

16. Show that the curvature of the plane polar graph r = f(0) at

a general point 6 is

(f©®) - r@ f"®)
+ (f(e))Z]:’a/Z

2(£'®) +
[(r®)’

K(0) =

17. Find the curvature of the cardioid r = a(1 — cos6).

= 18.

* 24,

* 285,

Find the curve r = r(t) for Yvhich K(t) = 1 and 7(¢z) = 1 for
all ¢, and r(0) = T(0) = i, N(0) = j, and B(0) =

dr
19. Suppose the curve r = r(¢) satisfies i cXr(t), where ¢

is a constant vector. Use curvature and torsion to show that
the curve is the circle in which the plane through r(0)
normal to ¢ intersects a sphere with radius |r(0)| centred at
the origin.

20. Find the evolute of the circular helix
r =acosti-+asint j+ brk.

Find the evolute of the parabola y = x2.

21.
22.

23.

Find the evolute of the ellipse x = 2cost, y = sint.

Find the polynomial f(x) of lowest degree so that track
along y = f(x) from x = —1 to x = 1 joins with existing
straighttracks y = —l,x < —landy =1, x > 1
sufficiently smoothly that a train moving at constant speed
will not experience discontinuous acceleration at the joins.

Help out model train manufacturers. Design a track segment
y = f(x), —1 < x <0, to provide a jolt-free link between a
straight track section y = 1, x < —1, and a semicircular arc
section x2 + y2 =1x>0.

If the position r, velocity v, and acceleration a of a moving
particle satisfy a(t) = A(£)r(t) + p(¢)v(t), where A(t) and
() are scalar functions of time ¢, and if vxa # 0, show
that the path of the particle lies in a plane.

Use Maple (and, in particular, the procedures defined in the files
curve-3d.mws and vecops.def) in Exercises 26-31.

In Exercises 2629 determine the curvature and torsion functions
for the given curves. Try to determine where the curvature or
torsion is maximum or minimum. Use the spacecurve
routine in the plots package to plot the curve.

A bead of mass m slides W1thout friction down a wire bent in H 26. r(t) = cos(t)i + 2sin(#)j + cos(s)k. Why should you not be

surprised at the value of the torsion? Describe the curve.

27. r(t) = (t —sint)i+ (1 — cost)j+ tk. Are the curvature and
torsion continuous for all ¢?

28. r(t) = cos(?) cos(2t)i + cos(¢) sin(21)j + sin(z)k. Show that
the curve lies on the sphere x% + y% 4 z2 = 1. What is the
minimum value of its curvature?

29, r(t) = (t +cost)i+ (¢t +sint)j+ (1 +¢ — cosp)k.

In Exercises 30-31, add new definitions to curve-3d.mws to
calculate the required functions.

30. A function evolute (t) giving the position vector of the
centre of curvature of the curve at position R (t).

31. A function tanline (t,u) whose value at u is the point
on the tangent line to the curve r = r(t) at distance « from
r(¢) in the direction of increasing .
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The German mathematician and astronomer Johannes Kepler (1571-1630) was
a student and colleague of Danish astronomer Tycho Brahe (1546-1601). Over
a lifetime of observing the positions of planets without the aid of a telescope,
Brahe compiled a vast amount of data, which Kepler analyzed. Although Polish
astronomer Nicolaus Copernicus (1473-1543) had postulated that the earth and
other planets moved around the sun, the religious and philosophical climate in
Europe at the end of the sixteenth century still favoured explaining the motion of
heavenly bodies in terms of circular orbits around the earth. It was known that
planets such as Mars could not move on circular orbits centred at the earth, but
models were proposed in which they moved on other circles (epicycles) whose
centres moved on circles centred at the earth.

Brahe’s observations of Mars were sufficiently detailed that Kepler realized
that no simple model based on circles could be made to conform very closely with
the actual orbit. He was, however, able to fit a more general ellipse with one focus
at the sun, and, based on this success and on Brahe’s data on other planets, he
formulated the following three laws of planetary motion:

Kepler’s Laws

1. The planets move on elliptical orbits with the sun at one focus.

2. Theradial line fromthe sunto a planet sweeps out equal areas in equal
times.

3. The squares of the periods of revolution of the planets around the sun
are proportional to the cubes of the major axes of their orbits.

Kepler’s statement of the third law actually says that the squares of the periods of
revolution of the planets are proportional to the cubes of their mean distances from
the sun. The mean distance of points on an ellipse from a focus of the ellipse is equal
to the semi-major axis. (See Exercise 17 below.) Therefore the two statements are
equivalent.

The choice of ellipses was reasonable once it became clear that circles would
not work. The properties of the conic sections were well understood, having been
developed by the Greek mathematician Apollonius of Perga around 200 BC. Nev-
ertheless, based, as it was, on observations rather than theory, Kepler’s formulation
of his laws without any causal explanation was a truly remarkable feat. The theo-
retical underpinnings came later when Newton, with the aid of his newly created
calculus, showed that Kepler’s laws implied an inverse square gravitational force.
(See Review Exercises 14—16 at the end of this chapter.) Newton believed that
his universal gravitational law also implied Kepler’s laws, but his writings fail to
provide a proof that is convincing by today’s standards.'

Later in this section we will derive Kepler’s laws from the gravitational law by
an elegant method that exploits vector differentiation to the fullest. First, however,
we need to attend to some preliminaries.

! There are interesting articles debating the historical significance of Newton’s work by Robert
Weinstock, Curtis Wilson, and others in The College Mathematics Journal, vol. 25, No. 3, 1994,
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&
"= T+Ecosh

Figure 11.22 An ellipse with focus
at the origin, directrix x = p, and
eccentricity ¢

Figure 11.23 The sum of the
distances from any point P on the
ellipse to the two foci O and F is
constant, & times the distance between
the dircctrices

Ellipses in Polar Coordinates

The polar coordinates [, 8] of a point in the plane whose distance r from the origin
is & times its distance p — r cos @ from the line x = p (see Figure 11.22) satisfy the
equation r = e(p — r cos 8), or, solving for r,

Sri
T 14ecosf’

where £ = ¢p. As observed in Sections 8.1 and 8.5, for 0 < ¢ < 1 this equation
represents an ellipse having eccentricity ¢. (It is a circle if £ = 0.) To see this, let
us transform the equation to Cartesian coordinates:

X+ yr=rt=¢(p—rcost)? =e(p — x)* =X (p* — 2px + x7).

With some algebraic manipulation, this equation can be juggled into the form

X4 34 2

| — g2 y?

¢ \? * ¢ 2
(1—82> («/1—82)

which can be recognized as an ellipse with centre at the point C = (—c, 0), where
c =¢el/(1 — &?), and semi-axes a and b given by

’

£

a=-—s (semi-major axis),
] —€
¢ T ;
b= (semi-minor axis).

1 —g2

The Cartesian equation of the ellipse shows that the curve is symmetric about the
lines x = —c¢ and y = 0 and so has a second focus at F = (—2¢, 0) and a second
directrix with equation x = —2¢ — p. (See Figure 11.23.) The ends of the major
axisare A = (@ — ¢,0) and A’ = (—a — ¢, 0), and the ends of the minor axis are
B = (—c¢,b) and B’ = (—c, —b).

B =(—c, b) y




Figure 11.24 Some parameters of
an ellipse

Figure 11.25 Basis vectors in the
direction of increasing r and 6
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If P is any point on the ellipse, then the distance O P is ¢ times the distance P Q
from P to the right directrix. Similarly, the distance F'P is ¢ times the distance
Q' P from P to the left directrix. Thus, the sum of the focal radii OP + F P is the
constant e Q' Q = £(2c¢ + 2p), regardless of where P is on the ellipse. Letting P
be A or B we get for this sum

2a=@—c¢)+(@a+c)=0A+FA=0B+ FB=2/b>+ 2.

It follows that

Le
a®=p 4+, c=+vVar= b= = gdq.

1—¢2

The number £ is called the semi-latus rectum of the ellipse; the latus rectum is
the width measured along the line through a focus, perpendicular to the major axis.
(See Figure 11.24.)

Remark The polar equation r = £/(1 + £ cos 8) represents a bounded curve only
if & < 1; in this case we have £/(1 + &) < r < £/(1 — ¢) for all directions 6. If
& = 1, the equation represents a parabola, and if ¢ > 1, a hyperbola. It is possible
for objects to travel on parabolic or hyperbolic orbits, but they will approach the
sun only once, rather than continue to loop around it. Some comets have hyperbolic
orbits.

Polar Components of Velocity and Acceleration

Let r(t) be the position vector at time ¢ of a particle P moving in the xy-plane.
We construct two unit vectors at P, the vector t points in the direction of the
position vector r, and the vector @ is rotated 90° counterclockwise from f. (See
Figure 11.25.) If P has polar coordinates [r, #], then F points in the direction of
increasing r at P, and 6 points in the direction of increasing 6. Evidently

F='cosfi+ sindj

0= —sin@ i+ coséj.
Note that § and 8 do not depend on r but only on 6:

ar .
— =40 and

do .
de do —

The pair {F, 9} forms a reference frame (a basis) at P so that vectors in the plane
can be expressed in terms of these two unit vectors. The I component of a vector
is called the radial component, and the & component is called the transverse
component. The frame varies from point to point, so we must remember that r and
0 are both functions of ¢. In terms of this moving frame, the position r(¢) of P can
be expressed very simply:

r=rr,

where r = r(¢) = |r(¢)| is the distance from P to the origin at time 7.
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We are going to differentiate this equation with respect to ¢ in order to express
the velocity and acceleration of P in terms of the moving frame. Along the path of
motion, r can be regarded as a function of either 6 or ¢; 6 is itself a function of 1. To
avoid confusion, let us adopt a notation that is used extensively in mechanics and
that resembles the notation originally used by Newton in his calculus.

A dot-over a quantity denotes the time derivative of that quantity. Two
dots denote the second derivative with respect to time. Thus

u=du/dt and  ii=d%u/di*.

First, let us record the time derivatives of the vectors t and 0. By the Chain Rule,
we have

dt do ..
F=—— =08,
"= ar
s dOdo .
T do dt

Now the velocity of P is

d R o
v=r= E(rf'):r'r%—rea.

Polar components of velocity
The radial component of velocity is7.
The transverse component of velocity is r6.

Since # and  are perpendicular unit vectors, the speed of P is given by
v=v| = V2 +r262

Similarly, the acceleration of P can be expressed in terms of radial and transverse
components:

d .
a=v=r= ;E(i*f'+r90)
= FE + 700 + 760 + rb0 — ro*¢
= (F — réME + (rd + 276)0.
Peolar components of acceleration

The radial component of accelerationis ¥ — r62.
The transverse component of acceleration is r6 + 2r8.

Central Forces and Kepler’s Second Law

Polar coordinates are most appropriate for analyzing motion due to a central force
that is always directed toward (or away from) a single point, the origin: F = A(r)r,
where the scalar A(r) depends on the position r of the object. If the velocity and
acceleration of the object are v = F and a = v, then Newton’s Second Law of
Motion (F = ma) says that a is parallel to r. Therefore,

d . .
E(rxv) =rXv+rxXv=vxXv+rxa=0+0=0,
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and r x v = h, a constant vector representing the object’s angular momentum
per unit mass about the origin. This says that r is always perpendicular to h, so
motion due to a central force always takes place in a plane through the origin having
normal h.

If we choose the z-axis to be in the direction of h and let |h| = A, then h = kk,
and the path of the object is in the xy-plane. In this case the position and velocity
of the object satisfy

r=rr and v =Fi+ réé.
Since £x 8 = k, we have

hk = rXv = ritX# + r20tx 0 = r’fk.
Hence, for any motion under a central force,

r’o =h (a constant for the path of motion).

This formula is equivalent to Kepler’s Second Law; if A(t) is the area in the plane
of motion bounded by the orbit and radial lines 8 = 8y and 6 = 6(¢), then

1 o0
2
At) = —/ 2 de,
2 Jo,

so that
dA _dAdo 1,
i _dodr 2 T 72

Thus, area is being swept out at the constant rate 22/2, and equal areas are swept out
in equal times. Note that this law does not depend on the magnitude or direction of
the force on the moving object other than the fact that it is central. You can also
derive the equation 720 = h (constant) directly from the fact that the transverse
acceleration is zero:

d . S L
E(rZG) =2rif +r’0 = r(216 +rf) = 0.

m An object moves along the polar curve r = 1/6 under the influence
of a force attracting it toward the origin. If the speed of the object is vy at the instant
when 6 = 1, find the magnitude of the acceleration of the object at any point on its

path as a function of its distance » from the origin.

Solution Sinccj, the force is central, we know that the transverse acceleration is
zero and that r26 = h is constant. Differentiating the equation of the path with
respect to time and expressing the result in terms of r, we obtain

, 1.
P gt =T

Hence, the radial component of acceleration is




. h?
a=Fr—r@?*=0—r— = )
ré r3

At6 = 1 we have r = 1, s0 § = h. At that instant the square of the speed is
v =F? +r%0% = h® + h? = 2h%,

Hence, h? = v% /2, and, at any point of its path, the magnitude of the acceleration
of the object is

2
Yo

2r3°

lar| =

Derivation of Kepler's First and Third Laws

The planets and the sun move around their common centre of mass. Since the sun
is vastly more massive than the planets, that centre of mass is quite close to the
centre of the sun. For example, the joint centre of mass of the sun and the earth
lies inside the sun. For the following derivation we will take the sun and a planet
as point masses and consider the sun to be fixed at the origin. We will specify the
directions of the coordinate axes later, when the need arises.

According to Newton’s law of gravitation, the force that the sun exerts on a
planet of mass m whose position vector is r is

k
Fo_Kkme_ km.

where k is a positive constant depending on mass of the sun, and ¥ = r/r.

As observed above, the fact that the force on the planet is always directed
toward the origin implies that rXxv is constant. We choose the direction of the
z-axis so that rX v = hk, so the motion will be in the xy-plane and 76 = h. We
have not yet specified the directions of the x- and y-axes but will do so shortly.
Using polar coordinates in the xy-plane, we calculate

k

v v Ttk
—_— =T = = ——-T.
e 9 h h
2
Since d6 /d8 = —r, we can integrate the differential equation above to find v:
k k.
=—— | td6=-6+C,
v b /r A +
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VoA
orbit
Z
// )

velocities

Figure 11.26
define a circle

The velocity vectors

where C is a vector constant of integration. Therefore, we have shown that

v—C| =

S

This result, known as Hamilton’s Theorem, says that as a planet moves around
its orbit, its velocity vector (when positioned with its tail at the origin) traces out a
circle with centre point C with position vector C. It is perhaps surprising that there
is a circle associated with the orbit of a planet after all. Only it is not the position
vector that moves on a circle but the velociry vector. (See Figure 11.26.)
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Recall that so far we have specified only the position of the origin and the
direction of the z-axis. Therefore, the xy-plane is determined but not the directions
of the x-axis or the y-axis. Let us choose these axes in the x y-plane so that C is
in the direction of the y-axis; say C = (¢k/h)j, where ¢ is a positive constant. We
therefore have

ko~
V= E(0+8j)'

The position of the x-axis is now determined by the fact that the three vectors i, j,
and k are mutually perpendicular and form a right-handed basis. We calculate rx v
again. Remember that r = r cos 0i + r sin 8, and also r = ri:

k . 2 . e
hk:rxv:z(rrxG%—recosOix,]+r€s1n6’JXJ)

k
= r(1 + ecos@)k.

k
Thus i = Fr(l + & cos 8), or, solving for r,
h/k
e
1+ ¢ecosh

This is the polar equation of the orbit. If ¢ < 1, it is an ellipse with one focus at the
origin (the sun) and with parameters given by

k2
Semi-latus rectum: £ = T
Semi-major axis: a= " - ¢t
J : Tk(1—82)  1-—¢g2
Semi-minor axis: b= W - £
’ I-22 J1-¢&2
£
Semi-focal separation: c=+a?—p?= 1 € .
—&

We have deduced Kepler’s First Law! The choices we made for the coordinate axes
result in perihelion (the point on the orbit that is closest to the sun) being on the
positive x-axis (8 = 0).

A planet’s orbit has eccentricity ¢ (where 0 < ¢ < 1) and its speed
at perihelion is vp. Find its speed v4 at aphelion (the point on its orbit farthest
from the sun).

Solution At perihelion and aphelion the planet’s radial velocity 7 is zero (since r
1s minimum or maximumy), so the velocity is entirely transverse. Thus vp = rpép
and vy = r46,4. Since r20 = h has the same value at all points of the orbit, we have
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rpvp = r%ép =h= riéA = FAVA.
The planet’s orbit has equation

_ £
"= 1 +ecosf’

so perihelion corresponds to & = 0 and aphelion to § = 7:

l d e
= an = .
e 1+¢ " 1—¢

rp
Therefore, vy = — vp =
ra 1+8
|

We can obtain Kepler’s Third Law from the other two as follows. Since the radial
line from the sun to a planet sweeps out area at a constant rate /2, the total area A
enclosed by the orbitis A = (1/2)T, where T is the period of revolution. The area
of an ellipse with semi-axes g and b is A = wab. Since b =4ta = hza/k, we have

4 4 472
T? = ﬁA2 = h—2n2a2b2 = % a’.

Note how the final expression for T2 does not depend on A, which is a constant for
the orbit of any one planet, but varies from planet to planet. The constant 472/ k
does not depend on the particular planet. (k depends on the mass of the sun and a
universal gravitational constant.) Thus,

T? A—;—g—z—f

says that the square of the period of a planet is proportional to the cube of the length,
2a, of the major axis of its orbit, the proportionality extending over all the planets.
This is Kepler’s Third Law. Modern astronomical data show that 72/a> varies by
only about three-tenths of one percent over the nine known planets.

Conservation of Energy

Solving the second-order differential equation of motion F = mf¥ to find the orbit of
a planet requires two integrations. In the above derivation we exploited properties
of the cross product to make these integrations easy. More traditional derivations of
Kepler’s laws usually begin with separating the radial and transverse components
in the equation of motion:

L k .
F=rg”=——, ré +2r6 = 0.
r
As observed earlier, the second equation above implies that 720 = h = coastant,

which is Kepler’s Second Law. This can be used to eliminate 6 from the first
equation to give

h? k

r3 r
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Therefore,

d [(i? n h? /. h? k.
— =+ )=rlF-=)=-5F
dr \ 2 2r2 r3 r2

If we integrate this equation, we obtain

1 (., K\ &k
5(’+ﬁ)'r—’f*

This is a conservation of energy law. The first term on the left is v>/2, the kinetic
energy (per unit mass) of the planet. The term —k/r is the potential energy per unit
mass. It is difficult to integrate this equation and to find r as a function of t. In any
event, we really want r as a function of 6 so that we can recognize that we have an
ellipse. A way to obtain this is suggested in Exercise 18 below.

Remark The procedure used above to demonstrate Kepler’s laws in fact shows
that if any object moves under the influence of a force that attracts it toward the
origin (or repels it away from the origin) and has magnitude proportional to the
reciprocal of the square of distance from the origin, then the object must move in
a plane orbit whose shape is a conic section. If the total energy E defined above
is negative, then the orbit is bounded and must therefore be an ellipse. If £ = 0,
the orbit is a parabola. If E > 0, then the orbit is a hyperbola. Hyperbolic orbits
are typical for repulsive forces but may also occur for attractions if the object has
high enough velocity (exceeding the escape velocity). See Exercise 22 below for
an example.

1. (Polar ellipses) Fill in the details of the calculation
suggested in the text to transform the polar equation of an
ellipse, r = £/(1 + ecos 8), where 0 < ¢ < 1, to Cartesian

speed of the object is vy at the instant when 6 = 1, find the
magnitude of the acceleration of the object at any point on
its path as a function of its distance r from the origin.

coordinates in a form showing the centre and semi-axes

explicitly.

Deductions from Kepler’s laws

6. The mean distance from the earth to the sun is

Polar components of velocity and acceleration

2. A particle moves on the circle with polar equation r = k,

(k > 0). What are the radial and transverse components of
its velocity and acceleration? Show that the transverse
component of the acceleration is equal to the rate of change
of the speed of the particle.

. Find the radial and transverse components of velocity and
acceleration of a particle moving at unit speed along the
exponential spiral r = ¢?. Express your answers in terms of
the angle 6.

. If a particle moves along the polar curve r = ¢ under the
influence of a central force attracting it to the origin, find the
magnitude of the acceleration as a function of r and the
speed of the particle.

. An object moves along the polar curve » = 2 under the
influence of a force attracting it toward the origin. If the

approximately 150 million km. Halley’s Comet approaches
perihelion (comes closest to the sun) in its elliptical orbit
approximately every 76 years. Estimate the major axis of
the orbit of Halley’s Comet.

. The mean distance from the moon to the earth is about

385,000 km, and its period of revolution around the earth is
about 27 days (the sidereal month). At approximately what
distance from the centre of the earth, and in what plane,
should a communications satellite be inserted into circular
orbit if it must remain directly above the same position on
the earth at all times?

. An asteroid is in a circular orbit around the sun. If its period

of revolution is T, find the radius of its orbit.

. If the asteroid in Exercise 8 is instantaneously stopped in its

orbit, it will fall toward the sun. How long will it take to get
there? Hint: you can do this question easily if instead you
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regard the asteroid as almost stopped, so that it goes into a
highly eccentric elliptical orbit whose major axis is a bit
greater than the radius of the original circular orbit.

Find the eccentricity of an asteroid’s orbit if the asteroid’s
speed at perihelion is twice its speed at aphelion.

perihelion and aphelion and the eccentricity of 1ts orbit.

As aresult of a collision, an asteroid originally in a circular
orbit about the sun suddenly has its velocity cut in half, so
that it falls into an elliptical orbit with maximum distance
from the sun equal to the radius of the original circular orbit.
Find the eccentricity of its new orbit.

If the speeds of a planet at perihelion and aphelion are vp
and vg. respectively, what is its speed when it is at the ends
of the minor axis of its orbit?

What fraction of its “year” (i.e., the period of its orbit) does
a planet spend traversing the half of its orbit that is closest to
the sun? Give your answer in terms of the eccentricity & of
the planet’s orbit.

Suppose that a planet is travelling at speed vg at an instant
when it is at distance ry from the sun. Show that the period
of the planet’s orbit is

2 (2 1;(2))"3/2
r=2(z2_ 1 .
JE\ro k

N S P .
Hint: the quantity — — Evz is constant at all points of the
-

orbit, as shown in the discussion of conservation of energy.
Find the value of this expression at perihelion in terms of the
semi-major axis, a.

The sum of the distances from a point P on an ellipse £ to
the foci of £ is the constant 2a, the length of the major axis
of the ellipse. Use this fact in a geometric argument to show
that the mean distance from points P to one focus of £ is a.
That is. show that

1
- rds =a.
(&) Je

where () is the circumference of £ and r is the distance
from a point on £ to one focus.

(A direct approach to Kepler’s First Law) The result of
eliminating @ between the equations for the radial and
transverse components of acceleration for a planet is

h? k

- — =

K
r r
Show that the change of dependent and independent
variables:

r(t) 0 =0(1),

T ue)

20

% 21

%22

.

transforms this equation to the simpler equation

d?u k

agz ThE T

Show that the solution of this equation is

YT AL LG T sveataUAR TYLAS SaRs AmmTLA O Sesnrs ave e
technique of Exercise 18 to find the trajectory of an object of
unit mass attracted to the origin by a force of magnitude
fry==k/ r3. Are there any orbits that do not approach
infinity or the origin as t — 00?

o mus seaw

Use the conservation of energy formula to show that if
E < 0 the orbit must be bounded; that is, it cannot get
arbitrarily far away from the origin.

(Polar hyperbolas) If ¢ > 1, then the equation

14
y = ——
14+ &cosb

represents a hyperbola rather than an ellipse. Sketch the
hyperbola, find its centre and the directions of its
asymptotes, and determine its semi-transverse axis, its
semi-conjugate axis, and semi-focal separation in terms of ¢
and ¢.

(Hyperbolic orbits) A meteor travels from infinity on a
hyperbolic orbit passing near the sun. At a very large
distance from the sun it has speed vos. The asymptotes of its
orbit pass at perpendicular distance D from the sun. (See
Figure 11.27.) Show that the angle § through which the
meteor’s path is deflected by the gravitational attraction of
the sun is given by

8 Dv?
tf - ) = —=2.
o (2) .

(c.0)

Figure 11.27 Path of a meteor




(Hint: you will need the result of Exercise 21.) The same
analysis and results hold for electrostatic attraction or
repulsion; f(r) = £k/ r2 in that case also. The constant k

CHAPTER REVIEW 701

depends on the charges of two particles, and r is the distance
between them.

Chapter Review

=

Key Ideas

e What is a vector function of a real variable, and why does
it represent a curve?

. A particle moves along the curve y = x in the xy-plane so
that at time 7 its speed is v = ¢. Find its acceleration at time
t = 3if it is at the point (+/2, 2) at that time.

o State the Product Rule for the derivative of 5. Find the curvature and torsion at a general point of the curve
u(r) e (V(yxwi(n)). r=ci+V2j+e'k

e What do the following terms mean? 6. A particle moves on the curve of Exercise 5 so that it is
o angular velocity © angular momentum at position r(z) at time ¢. Find its normal acceleration and

¢ centripetal acceleration ¢ Coriolis acceleration
¢ arc-length parametrization ¢ central force

¢ Find the following quantities associated with a parametric
curve C with parametrization r = r(¢), (a <t < b).

the velocity v(z) o the speed v(t)

the arc length ¢ the acceleration a(¢)

the unit tangent 'i“(t) ¢ the unit normal N(t)

the curvature «(t) © the radius of curvature p(¢)
the osculating plane ¢ the osculating circle

the unit binormal ﬁ(z‘) ¢ the torsion 7 (¢)

the tangential acceleration ¢ the normal acceleration

L R R SR B B R

the evolute
o State the Frenet—Serret formulas.

o State Kepler’s laws of planetary motion.
o What are the radial and transverse components of velocity
and acceleration?

Review Exercises

L If r(¢), v(t), and a(t) represent the position, velocity, and
acceleration at time ¢ of a particle moving in 3-space, and if,
at every time ¢, the a is perpendicular to both r and v, show
that the vector r(+) — ¢v(¢) has constant length.

2. Describe the parametric curve
r=tcosti+tsintj+ 2w — )k,
(0 <t < 2m), and find its length.

tangential acceleration at any time /. What is its minimum
speed?

. (A clothoid curve) The plane curve C in Figure 11.28 has
parametric equations

T g2 S ke?
x(s) = / cos —dt and y(s) = / sin — dt.
0 2 0 2

Verify that s is, in fact, arc length along C measured from
(0,0) and that the curvature of C is given by x(s) = ks.
Because the curvature changes linearly with distance along
the curve, such curves, called clothoids, are useful for joining
track sections of different curvatures.

Y4

Figure 11.28 A clothoid curve

3. A particle moves along the curve of intersection of the sur- 8. A particle moves along the polar curve r = e~ with constant

taces y = x° and z = 2x3 /3 with constant speed v = 6. Itis
moving in the direction of increasing x. Find its velocity and
acceleration when it is at the point (1, 1, 2/3).

angular speed & = k. Express its velocity and acceleration
in terms of radial and transverse components depending only
on the distance r from the origin.
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Some properties of cycloids

Exercises 9—12 all deal with the cycloid

r = a(t —sint)i+ a(l — cost)j.

Recall that this curve is the path of a point on the circumference

ofa
9.

10.

11.

12.

13.

Kep
InE

circle of radius « rolling along the x-axis.

Find the arc length s = s(T) of the part of the cycloid from
t=0tot =T <2x.

Find the arc-length parametrization r = r(s) of the arch
0 <t < 2z of the cycloid, with s measured from the point
(0. 0).

Find the evolute of the cycloid, that is, find parametric equa-
tions of the centre of curvature r = r.(¢) of the cycloid. Show
that the evolute is the same cycloid translated 7 a units to the
right and 2a units downward.

o x
Figure 11.29

A string of length 4a has one end fixed at the origin and
is wound along the arch of the cycloid to the right of the
origin. Since that arch has total length 84, the free end of
the string lies at the highest point A of the arch. Find the
path followed by the free end Q of the string as it is unwound
from the cycloid and is held taught during the unwinding.
(See Figure 11.29.) If the string leaves the cycloid at P, then

(arc OP)+ PQ =4a.

The path of Q is called the involute of the cycloid. Show that,
like the evolute, the involute is also a translate of the original
cycloid. In fact, the cycloid is the evolute of its involute.

Let P be a point in 3-space with spherical coordinates
(p.¢.6). Suppose that P is not on the z-axis. Find a triad
of mutually perpendicular unit vectors, {p. ¢, 83, at P in the
directions of increasing p, ¢, and 6, respectively. Is the triad
right- or left-handed?

ler’s laws imply Newton’s law of gravitation

xercises 1416, it is assumed that a planet of mass m moves

in an elliptical orbit r = £/(1 + & cos ), with focus at the origin

(the

sun), under the influence of a force F = F(r) that depends

only on the position of the planet.

14.

1s.

Assuming Kepler’s Second Law, show that rxv = h is con-
stant and, hence, that r20 = h is constant.

Use Newton’s Second Law of Motion (F = m¥) to show that
rxF(r) = 0. Therefore F(r) is parallel to r:

F(r) = — f(r) ¥, for some scalar-valued function f(r), and
the transverse component of F(r) is zero.

16. By direct calculation of the radial acceleration of the planet,

show that f(r) = mhz/(irz), where r = |r|. Thus, F is an
attraction to the origin, proportional to the mass of the planet,
and inversely proportional to the square of its distance from
the sun.

Challenging Problems

1. Let P be a point on the surface of the earth at 45° north

latitude. Use a coordinate system with origin at P and basis
vectors i and j pointing east and north, respectively, so that k
points vertically upward.

(a) Express the angular velocity £2 of the earth in terms of
the basis vectors at P. What is the magnitude £ of £2 in
rad/s?

(b) Find the Coriolis acceleration ac = 242 x v of an object
falling vertically with speed v above P.

(c) If the object in (b) drops from rest from a height of 100 m
above P, approximately where will it strike the ground?
Ignore air resistance but not the Coriolis acceleration.
Since the Coriolis acceleration is much smaller than the
gravitational acceleration in magnitude, you can use the
vertical velocity as a good approximation to the actual
velocity of the object at any time during its fall.

. (The spin of a baseball) When a ball is thrown with spin

about an axis that is not parallel to its velocity, it experiences
a lateral acceleration due to differences in friction along its
sides. This spin acceleration is given by a; = kS x v, where
v is the velocity of the ball, S is the angular velocity of its
spin, and k is a positive constant depending on the surface of
the ball. Suppose that a ball for which & = 0.001 is thrown
horizontally along the x-axis with an initial speed of 70 ft/s
and a spin of 1,000 radians/s about a vertical axis. Its velocity
v must satisfy

d
E}, = (0.001)(1,000k) x v — 32k = k x v — 32k
v(0) = 70i,

since the acceleration of gravity is 32 ft/sZ.

(a) Show that the components of v = v;i+ v2j+ v3K satisfy

dvj dvy dvsz

— =- — =1 — =-32
dt dt dt

vi(®) =70 nw(0) =0 v3(0) =0.

(b) Solve these equations, and find the position of the ball
t s after it is thrown. Assume that it is thrown from the
origin at time ¢t = 0.

(c) Att = 1/5s, how far, and in what direction, has the ball
deviated from the parabolic path it would have followed
if it had been thrown without spin?




*

3. (Charged particles moving in magnetic fields) Magnetic

fields exert forces on moving charged particles. If a particle of
mass m and charge g is moving with velocity v in a magnetic
field B, then it experiences a force F = gv x B, and hence its
velocity is governed by the equation

dv
— = B.
m o qv X

For this exercise, suppose that the magnetic field is constant
and vertical, say B = Bk (as, e.g., in a cathode-ray tube). If
the moving particle has initial velocity vp, then its velocity at
time ¢ is determined by

v
— —wv x Kk, where w = =
dt m

V(O) = V.

(a) Show that ve k = vp ek and |v| = |vg| for all 7.
(b) Let w(r) = v(t) — (vp @ K)K, so that w is perpendicular
to k for all r. Show that w satisfies

d*w 2

— = —w'W

dt?

w(0) =vg — (vge k)k

w(0) = wvy x k.

(c) Solve the initial-value problem in (b) for w(¢), and hence
find v(t).

(d) Find the position vector r(¢) of the particle at time ¢ if
it is at the origin at time r = 0. Verify that the path of
the particle is, in general, a circular helix. Under what
circumstances is the path a straight line? a circle?

. (The tautochrone) The parametric equations

x =a(@ —sinf) and y=a(cosd —1)

(for 0 < 6 < 2m) describe an arch of the cycloid followed by
a point on a circle of radius a rolling along the underside of
the x-axis. Suppose the curve is made of wire along which
a bead can slide without friction. (See Figure 11.30.) If
the bead slides from rest under gravity, starting at a point
having parameter value g, show that the time it takes for the
bead to fall to the lowest point on the arch (corresponding to
0 = m) is a constant, independent of the starting position 6.
Thus, two such beads released simultaneously from different
positions along the wire will always collide at the lowest
point. For this reason, the cycloid is sometimes called the
tautochrone, from the Greek for “constant time.” Hint: when
the bead has fallen from height y(6p) to height y(6), its speed

2¢(y(60) — y(0)). (Why?) The time for the bead
to fall to the bottom is

isv =

*

CHAPTER REVIEW 703

where ds is the arc length element along the cycloid.

1

0 = @ starting point

Figure 11.30

5. (The Drop of Doom) An amusement park ride at the West

Edmonton Mall in Alberta, Canada, gives thrill seekers a taste
of free-fall. It consists of a car moving along a track consisting
of straight vertical and horizontal sections joined by a smooth
curve. The car drops from the top and falls vertically under
gravity for 10 — 24/2 ~ 7.2 m before entering the curved
section at B. (See Figure 11.31.) It falls another 2V2 &~
2.8 m as it whips around the curve and into the horizontal
section DE at ground level, where brakes are applied to
stop it. (Thus, the total vertical drop from A to D or E
is 10 m, a figure, like the others in this problem, chosen for
mathematical convenience rather than engineering precision.)
For purposes of this problem it is helpful to take the coordinate
axes at a 45° angle to the vertical, so that the two straight
sections of the track lie along the graph y = |x|. The curved
section then goes from (—2, 2) to (2, 2) and can be taken to
be symmetric about the y-axis. With this coordinate system,
the gravitational acceleration is in the direction of i — j.

horizontal section

=y

Figure 11.31

(a) Find a fourth-degree polynomial whose graph can be
used to link the two straight sections of track without
producing discontinuous accelerations for the falling car.
(Why is fourth degree adequate?)

(b) Ignoring friction and air resistance, how fast is the car
moving when it enters the curve at B? at the midpoint C
of the curve? and when it leaves the curve at D?

(c) Find the magnitude of the normal acceleration and of the
total acceleration of the car as it passes through C.
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6. (A chase problem) A fox and a hare are running in the xy-

planc. Both are running at the same speed v. The hare is
running up the y-axis; at time ¢+ = O it is at the origin. The
fox is always running straight toward the hare. Attimet =0
the fox is at the point (a, 0), where ¢ > 0. Let the fox’s
position at time 7 be (x(t), y(t)).
(a) Verify that the tangent to the fox’s path at time ¢ has slope
dy y(@)—ut
dx  x(t)

(b) Show that the equation of the path of the fox satisfies the
equation

d*y dy\’
X i (22
Yax? * (d

Hint: differentiate the equation in (a) with respect to ¢.
On the left side note that (d/dt) = (dx/dt)(d/dx).

(c) Solve the equation in (b) by substituting u(x) = dy/dx
and separating variables. Note that y = O and u = 0
when x = a.

. Suppose the earth is a perfect sphere of radius a. You set out

from the point on the equator whose spherical coordinates are
(p,¢,0) = (a, /2, 0) and travel on the surface of the earth
at constant speed v, always moving toward the northeast (45°
east of north).

(a) Will you ever get to the north pole? If so, how long will
it take to get there?

(b) Find the functions ¢ (z) and 6(¢) that are the angular
spherical coordinates of your position at time ¢ > 0.

(c) How many times does your path cross the meridian
6 =07




