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Preface

It is worth saying something about the background to this book, since it is
linked to a sea change in the teaching of university mathematics, namely the
renaissance in undergraduate geometry, following a postwar decline. There is
little doubt that the enormous progress made in studying non-linear phenom-
ena by geometric methods has rekindled interest in the subject. However, that
is not the only reason for seeking change, as I pointed out in the preface to
Elementary Geometry of Algebraic Curves:

‘For some time I have felt there is a good case for raising the profile of
undergraduate geometry. The case can be argued on academic grounds alone.
Geometry represents a way of thinking within mathematics, quite distinct from
algebra and analysis, and so offers a fresh perspective on the subject. It can
also be argued on purely practical grounds. My experience is that there is a
measure of concern in various practical disciplines where geometry plays a
substantial role (engineering science for instance) that their students no longer
receive a basic geometric training. And thirdly, it can be argued on psycho-
logical grounds. Few would deny that substantial areas of mathematics fail to
excite student interest: yet there are many students attracted to geometry by its
sheer visual content.’

Background

A good starting point in developing undergraduate geometry is to focus on
plane curves. They comprise a rich area, of historical significance and increas-
ing relevance in the physical and engineering sciences. That raises a practical
consideration, namely that there is a dearth of suitable course texts: some are
out of date, whilst others are written at too high a level, or contain too much
material.

xi



xii Preface

I felt it was time to improve the situation, bearing in mind the importance
of foundational mathematical training, where the primary objective is to en-
able students to gain fluency in the basics. (Those who wish to develop their
interests will be warmly welcomed at the postgraduate level.) Over my career,
one of the healthier developments in the teaching of university mathematics is
the widespread adoption of clean, careful treatments of foundational material.
For instance linear algebra, group theory, general abstract algebra, introductory
calculus and real analysis are now widely taught on this pattern, supported by
excellent texts. Such courses fit the contemporary mould of good mathematics
education, by exhibiting internal coherence, an intrinsic approach, and stan-
dards of proof appropriate to the subject. I wanted to see geometry regain its
place in the mathematics curriculum, within this broad pattern.

The Elementary Geometry Trilogy

It was against this background that I wrote two companion texts1 presenting
elementary accounts of complementary viewpoints, to wit the algebraic view-
point (where curves are defined by the vanishing of a polynomial in two vari-
ables) and the differentiable viewpoint (where curves are parametrized by a
single real variable). I have been encouraged by the reactions of the mathe-
matical community, which has welcomed these contributions to undergraduate
geometry.

Both texts were intended primarily for second year students, with later ma-
terial aimed at third years. However, neither addresses the question of introduc-
ing university students to geometry for the first time. I emphasize this for good
reason, namely that geometry has largely disappeared from school mathemat-
ics. In my experience, few students acquire more than an imperfect knowledge
of lines and circles before embarking on their degree studies.

I think the way forward is to offer foundational geometry courses which
properly expose the body of knowledge common to both viewpoints, the basic
geometry of lines and conics in the Euclidean plane. The geometry of conics
is important in its own right. Conics are of considerable historical significance,
largely because they arise naturally in numerous areas of the physical and engi-
neering sciences, such as astronomy, electronics, optics, acoustics, kinematics,
dynamics and architecture. Quite apart from their physical importance, conics
are quite fundamental objects in mathematics itself, playing crucial roles in
understanding general plane curves.

1 Elementary Geometry of Algebraic Curves and Elementary Geometry of Differentiable Curves,
published by Cambridge University Press, and henceforth referred to as EGAC and EGDC respec-
tively. The present text will be designated as EEG.
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In this respect EEG should be of solid practical value to students and teach-
ers alike. On such a basis, students can develop their geometry with a degree
of confidence, and a useful portfolio of down-to-earth examples. For teachers,
EEG provides a source of carefully worked out material from which to make
a selection appropriate to their objectives. Such a selection will depend on
several factors, such as the attainment level of the students, the teaching time
available, and the intended integration with other courses.

I make no apology for the fact that some sections overlap the material of
EGAC and EGDC. On the contrary, I saw close integration as a positive advan-
tage. This book is a convenient stepping stone to those texts, taking one further
down the geometry road, and bringing more advanced treatments within reach.
In this way EEG can be viewed as the base of a trilogy, sharing a common
format. In particular, the book is unashamedly example based. The material is
separated into short chapters, each revolving around a single idea. That is done
for good pedagogical reasons. First, students find mathematics easier to digest
when it is split into a bite–sized chunks: the overall structure becomes clearer,
and the end of each chapter provides a welcome respite from the mental ef-
fort demanded by the subject. Second, by pigeon–holing the material in this
way the lecturer gains flexibility in choosing course material, without damag-
ing the overall integrity. On a smaller scale, the same philosophy is pursued
within individual chapters. Each chapter is divided into a number of sections,
and in turn each section is punctuated by a series of ‘examples’, culminating
in ‘exercises’ designed to illustrate the material, and to give the reader plenty
of opportunity to master computational techniques and gain confidence.

Axioms for Writing

The material is designed to be accessible to those with minimal mathematical
preparation. Basic linear algebra is the one area where some familiarity is as-
sumed: the material of a single semester course should suffice. And it would be
an advantage for the reader to feel comfortable with the concept of an equiva-
lence relation.

One of my guiding axioms was that the content should provide the reader
with a secure foundation for further study. Though elementary, it is coherent
mathematics, not just a mishmash of calculations posing as geometry. There
are new ways of viewing old things, concepts to be absorbed, results to con-
template, proofs to be understood, and computational techniques to master, all
of which further the student’s overall mathematical development. In this re-
spect I feel it is important for the student to recognise that although geometric
intuition points one in the right direction, it is no substitute for formal proof.
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To be consistent with that philosophy, it is necessary to provide intrinsic defi-
nitions and argue coherently from them.

There is something to be said for ring–fencing the content of a foundational
course from the outset. In the present context, I felt there was a good case for
restricting the geometry entirely to the real Euclidean plane. For instance, even
with that restriction there is more than enough material from which to choose.
Also, at the foundational level it may be unwise to develop too many concepts.
Thus complex conics are probably best left till students feel comfortable with
the mechanics of handling complex numbers. Likewise, my experience sug-
gests it is sensible to leave the projective plane till a little later in life.

The Development

One has to maintain a careful balance between theory and practice. For in-
stance, the initial discussion of lines emphasizes the difference between a lin-
ear function on the plane and its zero set. To the student that may seem un-
duly pedantic, but failure to make the distinction introduces a potential source
of confusion. On the other hand, since lines are quite fundamental to the de-
velopment, a whole section is devoted to the practicalities of handling them
efficiently. The Euclidean structure on the plane may well be familiar from a
linear algebra course: nevertheless, there is a self–contained treatment, leading
to the formula for the distance from a point to a line which underlies the focal
constructions of conics.

Circles provide the first examples of general conics, and of the fact that a
conic may not be determined by its zero set. However, we follow the pattern
for lines by showing that the zero sets of real circles do determine the equation,
a result extended (in the final chapter) to general conics with infinite zero sets.
From circles it is but a short step to general conics. The classical invariants
are introduced at an early stage, yielding a first broad subdivision into types,
a prelude to the later congruence classification. Despite their uninteresting ge-
ometry, degenerate conics do arise naturally in families of conics as transitional
types: and for that reason, a chapter is devoted to them. Likewise, a chapter is
reserved for centres, since they provide basic geometric distinctions exploited
in the congruence classification.

A recurring theme in the development is the way in which lines intersect
conics. From single lines we progress to parallel pencils, leading to the clas-
sical midpoint locus, and the concepts of axis and asymptotic direction. In the
same vein we study pencils of lines through a point on a conic, leading to the
central geometric concepts of tangent and normal. Finally, the question of how
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a general pencil of lines interesects a conic gives rise to the classical concepts
of pole and polar, and the interesting idea of the orthoptic locus.

This text has two distinctive features. The first is that despite its intrinsic im-
portance to the metric geometry, the classical focal construction appears later
in the development than is usual. That is quite deliberate. One reason is that it
aids clarity of thought. But there is also a technical reason. I wanted a method
for finding foci and directrices independent of the congruence classification.
That not only enables the student to handle a wider range of examples, but also
clarifies the uniqueness question for focal constructions, a surprising omission
in most texts. Another distinctive feature is that the congruence classification
is left till the end. Again, that is quite deliberate. To my way of thinking, the
geometry is more interesting than the listing process, so deserves to be devel-
oped first. Also, the congruence classification is a natural resting point in the
student’s geometric progression. Looking back, it lends cohesion to the range
of examples met in the text: and looking forward, it raises fundamental ques-
tions which are better left to final year courses.
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1

Points and Lines

Lines play a fundamental role in geometry. It is not just that they occur widely
in the analysis of physical problems – the geometry of more complex curves
can sometimes be better understood by the way in which they intersect lines.
For some readers the material of this chapter will be familiar from linear al-
gebra, in which case it might be best just to scan the contents and proceed to
Chapter 2. Even so, you are advised to look carefully at the basic definitions.
It is worth understanding the difference between a linear function and its zero
set: it may seem unduly pedantic, but blurring the distinction introduces a po-
tential source of confusion. Much of this text depends on the mechanics of
handling lines efficiently and for that reason Section 1.4 is devoted to practical
procedures. In Section 1.5 we consider lines from the parametric viewpoint,
which will be of use later when we look at the properties of conics in more
detail. Finally, we go one step further by considering pencils of lines, which
will play a key role in introducing axes in Chapter 7.

1.1 The Vector Structure

Throughout this text R will denote the set of real numbers. For linguistic vari-
ety we will refer to real numbers as constants (or scalars).1 We will work in the
familiar real plane R

2 of elementary geometry, whose elements Z = (x, y) are
called points (or vectors). Recall that we can add vectors, and multiply them
by constants λ, according to the familiar rules

(x, y) + (x ′, y′) = (x + x ′, y + y′), λ(x, y) = (λx, λy).

Two vectors Z = (x, y), Z ′ = (x ′, y′) are linearly dependent when there exist
constants λ, λ′ (not both zero) for which λZ + λ′Z ′ = 0: otherwise they are

1 In this text the first occurrence of an expression is always italicized, the context defining its
meaning. Now and again we also italicize expressions for emphasis.

1



2 Points and Lines

linearly independent. Thus non-zero vectors Z , Z ′ are linearly dependent when
each is a constant multiple of the other. By linear algebra Z , Z ′ are linearly
independent if and only if xy′ − x ′y �= 0: and in that case linear algebra tells
us that any vector can be written uniquely in the form λZ + λ′Z ′ for some
scalars λ, λ′.

Example 1.1 The relation of linear dependence on non-zero vectors is an
equivalence relation on the plane (with the origin deleted) and the resulting
equivalence classes are ratios. The ratio associated to the point (x, y) is de-
noted x : y. Provided y �= 0 the ratio x : y can be identified with the constant
x/y, whilst the ratio (1 : 0) is usually denoted ∞.

1.2 Lines and Zero Sets

Our starting point is to give a careful definition of what we mean by a line.
A linear function in x , y is an expression ax + by + c, where the coefficients
a, b, c are constants, and at least one of a, b is non-zero. Suppose we have two
linear functions

L(x, y) = ax + by + c, L ′(x, y) = a′x + b′y + c′.

We say that L , L ′ are scalar multiples of each other when there exists a real
number λ �= 0 with a′ = λa, b′ = λb, c′ = λc. For instance, any two of the
following linear functions are scalar multiples of each other

x − y + 1, 2x − 2y + 2, −x + y − 1.

This relation on linear functions is an equivalence relation, and an equivalence
class is called a line. Our convention is that the line associated to a linear
function L is denoted by the same symbol. Associated to any linear function L
is its zero set

{(x, y) ∈ R
2 : L(x, y) = 0}.

Note that any scalar multiple of L has the same zero set, so the concept makes
perfect sense for lines. Instead of saying that P = (x, y) is a point in the
zero set, we shall (for linguistic variety) say that P lies on L , or that L passes
through P .

At this point you should pause, long enough to be sure you have absorbed
the preceding definitions. A line is a linear function, up to scalar multiples: it
is a quite distinct object from its zero set, a set of points in the plane. The zero
set of a line is completely determined by that line. In the next section we will
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show that conversely, a line is completely determined by its zero set, so it may
seem pedantic to separate the concepts. However the ‘conics’ we will meet in
the Chapter 4 are not necessarily determined by their zero sets, so it is wise to
get into the habit of maintaining the distinction.

1.3 Uniqueness of Equations

Though elementary, the following result is conceptually important. It is the
first of a sequence of results linking two disparate notions.

Theorem 1.1 Through any two distinct points P = (p1, p2), Q = (q1, q2)

there is a unique line ax + by + c.

Proof To establish this fact we seek constants a, b, c (not all zero) for which

ap1 + bp2 + c = 0, aq1 + bq2 + c = 0. (1.1)

That is a linear system of two equations in the three unknowns a, b, c with
matrix (

p1 p2 1
q1 q2 1

)
.

Since P , Q are distinct, at least one of the 2 × 2 minors of this matrix is
non-zero. (You really ought to check this.) By linear algebra, the matrix has
rank 2, hence kernel rank 1. That means that there is a non-trivial solution
(a, b, c), and that any other solution (a′, b′, c′) is a non-zero scalar multiple.
Non-triviality means that at least one of a, b, c is non-zero: in fact, at least one
of a, b is non-zero, for if a = b = 0 then c �= 0, and our linear system of
equations fails to have a solution. Thus there is a line through P , Q and any
other line with that property coincides with it.

Thus a line is determined by its zero set, meaning that if the linear functions
L , L ′ have the same zero sets they are scalar multiples of each other: we have
only to pick two distinct points in the common zero set, and apply the above
result. That justifies the time-honoured practice of referring to the equation
L = 0 of a line L . Strictly, that is an abbreviation for the zero set of L , but
since the zero set determines L it is not too misleading. Nevertheless, you are
strongly advised to maintain a crystal-clear mental distinction between lines
and their zero sets.

Example 1.2 The slope of a line ax + by + c = 0 is the ratio −a : b. Lines of
infinite slope are vertical and can be written in the form x = x0, whilst lines
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of zero slope are horizontal and can be written in the form y = y0. For non-
vertical lines the slope is identified with the constant −a/b. Any non-vertical
line can be written y = px + q for some constants p, q and has slope p:
likewise, any non-horizontal line can be written x = r y + s for some constants
r , s and has slope 1/r . Observe that any line can be expressed in one (or both)
of these forms. It will also be convenient to refer to the ratio −b : a as the
direction of the line, and any representative of this ratio as a direction vector:
in particular, (−b, a) is a direction vector for the line.

Exercise

1.3.1 Two linear functions a1x + b1 y + c1, a2x + b2 y + c2 are such that
c1 = a2

1 + b2
1, c2 = a2

2 + b2
2. Show that if the resulting lines coincide

then a1 = a2, b1 = b2.

1.4 Practical Techniques

Much of the material in this book revolves around the sheer mechanics of han-
dling lines. In this section we introduce a small number of practical techniques,
which are well worth mastering.

Example 1.3 There is an easily remembered formula for the line through p,
q of the previous example. Linear algebra (or direct substitution) tells us that a
solution (a, b, c) of the equations (1.1) is given by a = p2 − q2, b = q1 − p1,
c = p1q2 − p2q1. Substituting for a, b, c in ax + by + c = 0 we see that the
equation of the line is ∣∣∣∣∣∣

x y 1
p1 p2 1
q1 q2 1

∣∣∣∣∣∣ = 0. (1.2)

Here is a useful application. A set of points is collinear when there exists
one line on which all the points of the set lie. Assuming there are at least two
distinct points in the set, it will be collinear if and only if every other point
lies on the line joining these two. Thus to check that a given set of points is
collinear we need a criterion for three points to be collinear.

Example 1.4 The condition for three distinct points P1 = (x1, y1), P2 =
(x2, y2), P3 = (x3, y3) to be collinear is that the following relation holds.
Indeed they are collinear if and only if P1 lies on the line joining P2, P3 so
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intersecting lines parallel lines repeated lines

Fig. 1.1. Three ways in which lines can intersect

satifies the equation of the previous example

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ = 0.

The intersection of two lines is the set of points common to both zero sets.
The point of the next example is that there are just three possibilities: the in-
tersection is either a single point, or empty, or coincides with both zero sets.

Example 1.5 The intersections of two lines L , L ′ are the common solutions
of two linear equations

ax + by + c = 0, a′x + b′y + c′ = 0.

Provided (a, b), (a′, b′) are linearly independent there is a unique solution,
given by Cramer’s Rule

x = bc′ − b′c
ab′ − a′b

, y = a′c − ac′

ab′ − a′b
.

Otherwise, there are two possibilities. The first is that L , L ′ have no intersec-
tion, and are said to be parallel: and the second is that L , L ′ have identical zero
sets, so coincide. Thus the lines parallel to ax + by + c = 0 are those of the
form ax + by + d = 0 with d �= c. More generally, a set of lines is parallel
when no two of them have a common point.

A set of lines is concurrent when there exists a point through which every
line in the set passes. Assuming there are at least two distinct lines in the set,
it will be concurrent if and only if every other line passes through their inter-
section. It would therefore be helpful to have a criterion for three general lines
to be concurrent.
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Lemma 1.2 A necessary and sufficient condition for three distinct non-
parallel lines a1x + b1 y + c1 = 0, a2x + b2 y + c2 = 0, a3x + b3 y + c3 = 0
to be concurrent is that the relation (1.3) below holds∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ = 0. (1.3)

Proof By linear algebra (1.3) is a necessary and sufficient condition for the
following homogeneous sytem of linear equations to have a non-trivial solution
(x, y, z)

a1x + b1 y + c1z = 0, a2x + b2 y + c2z = 0, a3x + b3 y + c3z = 0.

If the lines are concurrent, there is a point (p, q) lying on all three, and hence
a non-trivial solution x = p, y = q , z = 1 of the system with z �= 0. And,
conversely, if there is a solution with z �= 0 then the point (p, q) with p = x/z,
q = y/z lies on all three lines, so they are concurrent. It remains to consider
the possibility when there is a non-trivial solution (x, y, z) with z = 0, so there
is a non-trivial solution (x, y) for the homogeneous system

a1x + b1 y = 0, a2x + b2 y = 0, a3x + b3 y = 0.

However, in that case linear algebra tells us that the vectors (a1, b1), (a2, b2),
(a3, b3) are linearly dependent, so the lines are parallel, contrary to assump-
tion.

Exercises

1.4.1 In each of the following cases find the equation of the line L through
the given points P , Q:

(i) P = (1, −1), Q = (2, −3),
(ii) P = (1, 7), Q = (3, −4),
(iii) P = (3, −2), Q = (5, −1).

1.4.2 In each of the following cases find the points of intersection of the
given lines:

(i) 2x − 5y + 1 = 0, x + y + 4 = 0,
(ii) 7x − 4y + 1 = 0, x − y + 1 = 0,
(iii) ax + by − 1 = 0, bx + ay − 1 = 0.
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1.4.3 In each of the following cases determine whether P , Q, R are colli-
near, and if so find the line through them:

(i) P = (1, −3), Q = (−1, −5), R = (2, −2),
(ii) P = (3, 1), Q = (−1, 2), R = (19, −3),
(iii) P = (4, 3), Q = (−2, 1), R = (1, 2).

1.4.4 Find the value of λ for which P = (3, 1), Q = (5, 2), R = (λ, −3)

are collinear.
1.4.5 Show that for any choice of a, b the points (a, 2b), (3a, 0), (2a, b),

(0, 3b) are collinear.
1.4.6 In each of the following cases show that the given lines are concur-

rent:

(i) 3x − y − 2 = 0, 5x − 2y − 3 = 0, 2x + y − 3 = 0,
(ii) 2x − 5y + 1 = 0, x + y + 4 = 0, x − 3y = 0,
(iii) 7x − 4y + 1 = 0, x − y + 1 = 0, 2x − y = 0.

1.4.7 Find the unique value of λ for which the lines x − 3y + 3 = 0,
x + 5y − 7 = 0, 2x − 2y − λ = 0 are concurrent.

1.5 Parametrized Lines

So far we have viewed lines as sets of points in the plane, defined by a single
equation. The next step is to take a different viewpoint, and think of lines as
‘parametrized’ in a natural way. It is a small step, but it develops into a different
viewpoint of the subject.

Lemma 1.3 Let P = (p1, p2), Q = (q1, q2) be distinct points on a line
ax + by + c = 0. For any constant t the point Z(t) = (x(t), y(t)), where x(t),
y(t) are defined below, also lies on the line

x(t) = (1 − t)p1 + tq1, y(t) = (1 − t)p2 + tq2. (1.4)

Conversely, any point Z = (x, y) on the line has this form for some constant t .

Proof The first claim follows from the following identity, as both expressions
in braces are zero

ax(t) + by(t) + c = (1 − t){ap1 + bp2 + c} + t{aq1 + bq2 + c}.
Conversely, for any point Z = (x, y) on L the relation (1.2) is satisfied. Thus
the rows of the matrix are linearly dependent, and there are constants s, t for
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P

Z(t)

Q

Fig. 1.2. Parametrization of a line

which the following relation holds. The relations (1.4) follow immediately

(x, y, 1) = s(p1, p2, 1) + t (q1, q2, 1).

The relations (1.4) are the standard parametrization of the line with respect
to the points P , Q. The mental picture is that the line is traced by a moving
particle having the position Z(t) at time t : at time t = 0 the particle is at
P = Z(0), and at time t = 1 it is at Q = Z(1).

Example 1.6 Consider the line 2x −3y +3 = 0. By inspection the line passes
through the points P = (0, 1), Q = (3, 3) giving the parametrization x(t) =
3t , y(t) = 2t + 1. A different choice gives rise to a different parametrization.
For instance P = (−3, −1), Q = (6, 5) produces x(t) = 3(3t − 1), y(t) =
6t − 1.

The proof of Lemma 1.3 shows that the zero set of any line is infinite,
since different values of t correspond to different points Z(t) on the line. The
midpoint of the line is the point R with parameter t = 1/2, i.e. the point

R = P + Q

2
.

Exercises

1.5.1 In each of the following cases find the standard parametrization of the
line L relative to the points P , Q:

(i) L = x − 2y − 5, P = (3, −1), Q = (7, 1),
(ii) L = 3x + y − 1, P = (3, −8), Q = (−1, −2).
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1.5.2 In each of the following cases find parametrizations (with integral
coefficients if possible) for the given lines:

(i) x + 3y − 7 = 0, (iv) 2x + 6y − 5 = 0,
(ii) 3x − 4y − 13 = 0, (v) 2x − 3y + 1 = 0,
(iii) 7x − 3y − 8 = 0, (vi) 5x − 3y + 1 = 0.

1.5.3 Find equations for the following parametrized lines:

(i) x = 2 + 3t , y = −1 + 4t ,
(ii) x = 1

2 + 3
4 t , y = −3 + t ,

(iii) x = −3 − t , y = 1 − 2t .

1.5.4 Show that the parametrized lines x = 2 + 3t , y = −1 + 4t and
x = −4 + 6t , y = −9 + 8t coincide.

1.5.5 Find the three intersections of the following parametrized lines:

(i) x = 2 + 3t , y = 1 − t ,
(ii) x = 4 + 4t , y = 1 − 2t ,
(iii) x = −3 − t , y = 2 + 3t .

1.5.6 Show that any non-vertical line has a parametrization of the form
x(t) = t , y(t) = α + βt , and that any non-horizontal line has a
parametrization of the form x(t) = γ + δt , y(t) = t .

1.6 Pencils of Lines

By the pencil of lines spanned by two distinct lines L , M we mean the set of
all lines of the form λL + µM , where λ, µ are constants, not both zero. The
key intersection property of a pencil is that any two distinct lines L ′, M ′ in it
have the same intersection as L , M . To this end, write

L ′ = λL + µM, M ′ = λ′L + µ′M.

Since L ′, M ′ are distinct, the vectors (λ, µ), (λ′, µ′) are linearly independent,
and by linear algebra the relations L ′ = 0, M ′ = 0 are equivalent to L = 0,
M = 0. That establishes the claim.

The first geometric possibility for the pencil of lines spanned by L , M is
that L , M intersect at a point P . Then, by the intersection property any line in
the pencil passes through P , and we refer to the pencil of lines through P . Any
line ax + by + c = 0 through P = (p, q) must satisfy ap + bq + c = 0, so
can be written in the form

a(x − p) + b(y − q) = 0. (1.5)
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Fig. 1.3. Pencils of lines

Example 1.7 Let L , M be distinct lines in the pencil of all lines through a
point P . We claim that any line N through P is in the pencil, so has the form
N = λL + µM for some constants λ, µ. As above, we can write




L(x, y) = a(x − p) + b(y − q)

M(x, y) = c(x − p) + d(y − q)

N (x, y) = e(x − p) + f (y − q).

Since L , M have different directions, the vectors (a, b), (c, d) are linearly
independent, and by linear algebra form a basis for the plane. Thus there exist
unique constants λ, µ (not both zero) for which the displayed relation below
holds. It follows that N = λL + µM , as was required

(e, f ) = λ(a, b) + µ(c, d).

Example 1.8 In the pencil of lines through P = (p, q) there is a unique
vertical line L(x, y) = x − p, and a unique horizontal line M(x, y) = y − q.
By the previous example, any line in the pencil is a linear combination of L ,
M , as is illustrated by equation (1.5).

The second geometric possibility for the pencil of lines spanned by L , M is
that L , M are parallel, so by the intersection property any two distinct lines in
the pencil are parallel. We call this a parallel pencil of lines, and think of it as
a limiting case of a general pencil, where all the lines ‘pass through’ the same
point at infinity. In such a pencil all the lines have the same direction −b : a,
so it makes sense to refer to the parallel pencil in that direction.

Example 1.9 Any line in the direction −b : a has an equation of the form
N = 0, where N = ax + by + c for some constant c. Conversely any line
of this form must be in the pencil. Suppose indeed that L = ax + by + l,
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M = ax + by + m are two distinct lines in the pencil. Then we can write
N = λL + µM , where

λ = c − m

l − m
, µ = l − c

l − m
.

Finally, it is worth noting one small difference between the two geometric
possibilities described above. Consider the pencil of lines spanned by two dis-
tinct lines L , M . In the case when the lines intersect at a point P , every expres-
sion λL + µM is automatically a linear function, so defines a line. However,
when the lines are parallel, there is a unique ratio λ : µ for which λL + µM
fails to be a linear function. For instance, in the parallel pencil spanned by
L(x, y) = x , M(x, y) = 2x − 1, the expression 2L − M = 1 fails to be linear.

Exercise

1.6.1 Show that the pencil of lines spanned by the lines 2x + 3y − 8,
4x − 7y + 10 coincides with the pencil spanned by 3x + 4y − 11,
2x − 5y + 8.



2

The Euclidean Plane

The material of the previous chapter lay wholly within the context of linear
algebra. In this chapter we introduce the Euclidean structure on the plane, the
central concept on which the rest of this text depends. It is that structure which
enables us to introduce length, angle, and distance. The key technical fact is
the Cauchy inequality, leading directly to the Triangle inequality, and the in-
troduction of angle. In the final section we introduce the distance between a
point and a line, the key to the focal constructions of conics in Chapter 4.

2.1 The Scalar Product

The plane is endowed with its standard Euclidean structure. By this we mean
that for any two vectors Z1 = (x1, y1), Z2 = (x2, y2) we have the standard
scalar product (or dot product) defined by the relation

Z1 • Z2 = x1x2 + y1 y2.

The basic properties (Exercise 2.1.1) of the scalar product are listed below:

S1: Z • Z ≥ 0 with equality if and only if Z = 0.
S2: Z • W = W • Z .
S3: Z • (λW ) = λ(Z • W ).
S4: Z • (W + W ′) = Z • W + Z • W ′.

S2 is referred to as the symmetry property. Properties S3, S4 together say that
• is linear in its second argument: by symmetry, it is also linear in its first
argument, and for that reason • is said to be bilinear. Two vectors Z , W are
perpendicular when Z • W = 0.

Example 2.1 Let Z , W be vectors with W �= 0. We claim that there is a unique
scalar λ with the property that the vectors Z ′ = Z −λW , W are perpendicular.

12
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Indeed, our requirement is that

0 = Z ′ • W = (Z − λW ) • W = Z • W − λ(W • W ).

That gives the unique solution

λ = Z • W

W • W
.

We call the vector λW the component of Z parallel to W , and the vector Z ′ =
Z − λW the component of Z perpendicular to W .

Exercise

2.1.1 Starting from the definition of the scalar product, establish the prop-
erties S1, S2, S3, S4.

2.2 Length and Distance

Property S1 of the scalar product is expressed by saying that the scalar product
is positive definite. In view of this property it makes sense to define the length
of a vector Z = (x, y) to be

|Z | =
√

x2 + y2.

Throughout this book we will use the following fundamental properties L1,
L2, L3 of the length function. The property L1 is an immediate consequence
of S1 above: however L2 and L3 require proof, representing the next step in
our development

L1: |Z | = 0 if and only if Z = 0
L2: |Z • W | ≤ |Z ||W | (The Cauchy Inequality)
L3: |Z + W | ≤ |Z | + |W | (The Triangle Inequality)

Lemma 2.1 For any two vectors Z, W in the plane we have the relation
|Z • W | ≤ |Z ||W |. (The Cauchy Inequality.)

Proof When Z = 0 the LHS is zero, and the inequality is satisfied. We can
therefore assume that Z �= 0, so Z • Z > 0. Set λ = Z • W/Z • Z . Then λZ
represents the component of W parallel to Z and W − λZ is the component
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Fig. 2.1. Components of a vector

perpendicular to Z . (Figure 2.1.) Then

0 ≤ |W − λZ |2 = (W − λZ) • (W − λZ)

= W • W − 2λ(Z • W ) + λ2(Z • Z)

= W • W − λ(Z • W )

= |W |2 − (Z • W )2

|Z |2 .

The result follows on multiplying through by |Z |2 and taking positive square
roots.

Lemma 2.2 For any two vectors Z, W in the plane we have the relation
|Z + W | ≤ |Z | + W |. (The Triangle Inequality.)

Proof The Cauchy Inequality yields the following series of relations, from
which the result follows on taking positive square roots

|Z + W |2 = (Z + W ) • (Z + W ) = Z • Z + 2(Z • W ) + W • W

≤ |Z |2 + 2|Z • W | + |W |2 ≤ |Z |2 + 2|Z ||W | + |W |2
= (|Z | + |W |)2.

We define the distance between two points U , V in the plane to be the scalar
|U −V |. The following basic properties of the distance function are immediate
from L1, L2, L3

M1: |U − V | = 0 if and only if U = V
M2: |U − V | = |V − U |
M3: |U − V | ≤ |U − W | + |W − V |.

Note that distance is invariant under translation, in the sense that for any
vector W the distance between U , V equals that between their translates
U + W , V + W .
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Exercises

2.2.1 A vector Z is unit when |Z | = 1. Let U , V be unit vectors. Show that
U + V , U − V are perpendicular.

2.2.2 Establish the following parallelogram law for any vectors U , V

|U + V |2 + |U − V |2 = 2|U |2 + 2|V |2.
2.2.3 The length of a vector was expressed in terms of the scalar product.

Conversely, show that the scalar product can be expressed in terms of
the length via the polarization identity

U • V = 1

2
{|U |2 + |V |2 − |U − V |2}.

2.2.4 Let A, B be distinct points on a line L , and let e be a positive constant.
By parametrizing L show that when e �= 1 there exist two distinct
points P for which P A = eP B, and that when e = 1 there is just
one.

2.3 The Concept of Angle

Given two non-zero vectors V , V ′ we can write the Cauchy Inequality in the
following form

−1 ≤ V • V ′

|V ||V ′| ≤ 1.

Looking at the graph of the cosine function1 we see that there is therefore a
unique constant α with 0 ≤ α ≤ π for which

cos α = V • V ′

|V ||V ′| . (2.1)

We call α the angle between the vectors V , V ′. Thus when V , V ′ are unit
vectors the scalar product is just the cosine of the angle between them. It is
usual to refer to angles in the range 0 ≤ α < π/2 as acute, to the angle
α = π/2 as a right angle, and to angles in the range π/2 < α ≤ π as obtuse.
Thus two vectors V , V ′ are perpendicular when the angle between them is a
right angle.

1 More formally, we are using the fact from elementary analysis that given any constant t with
−1 ≤ t ≤ 1 there is a unique constant α in the interval 0 ≤ α ≤ π for which cos α = t .
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Example 2.2 Let A, B, C be non-zero vectors with C = A − B, and let α

be the angle between A, B. Expanding the expression for |C |2 we obtain the
cosine rule of school trigonometry

|C |2 = |A|2 − 2|A||B| cos α + |B|2.
A special case arises when A, B are perpendicular, so the angle α is a right
angle: the cosine rule then reduces to the familiar Pythagoras Theorem

|C |2 = |A|2 + |B|2.
Our next step is to extend the idea of angle from vectors to lines. First a

preliminary observation. We can write any line L = ax + by + c in the form
L = V • Z + c, where V = (a, b) and Z = (x, y). Thus when c = 0 (or
equivalently, the line passes through the origin) the zero set of the line is the
set of vectors Z perpendicular to V . The vector V can always be chosen to be
a unit vector, by dividing L through by the length of V : in that case the line
is said to be in canonical form. There are therefore two canonical forms for a
line, each obtained from the other by multiplying through by −1. For instance
the line L = 3x + 4y − 2 has the canonical forms

3x + 4y − 2

5
,

−3x − 4y + 2

5
.

Consider now two lines L , L ′ defined by the linear functions ax + by + c,
a′x + b′y + c′. The angle between the vectors V = (a, b), V ′ = (a′, b′) is by
definition the unique constant α with 0 ≤ α ≤ π for which cos α = t , where

t = V • V ′

|V ||V ′| .
It is important to realise that this expression depends on the choice of linear
functions defining the lines, since multiplication of the linear functions by non-
zero constants multiplies t by ±1.

Lemma 2.3 Let α, β be the unique angles in the range 0 ≤ α, β ≤ π for
which cos α = t , cos β = −t . Then α + β = π .

Proof Using the Difference Formula for the cosine function we have cos α =
− cos β = cos(π − β), and since the angles α, π − β both lie in the interval
0 ≤ θ ≤ π they are equal.2

The angles α, β of this lemma are the angles between the lines L , L ′.
(Figure 2.2.) Generally, one of the angles between two lines is acute, and the
other obtuse: the only exception is when both angles are right angles.

2 We are using another fact from elementary analysis, namely that in the interval 0 ≤ θ ≤ π the
cosine function is strictly decreasing.
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Fig. 2.2. Angles between two lines

Example 2.3 We will determine the angles between the two lines L = 4x −
y − 2, L ′ = 3x − 5y + 1. In this example V = (4, −1), V ′ = (3, −5) and the
angles θ between the lines are determined by

± cos θ = V • V ′

|V ||V ′| = 17√
17

√
34

= 1√
2
.

It now follows from elementary trigonometry that the required angles are α =
π/4, β = 3π/4.

An exceptional case arises when both the angles between L , L ′ are right
angles, in which case we say that the lines are perpendicular. The condition
for L = ax +by +c, L ′ = a′x +b′y +c′ to be perpendicular is that the vectors
V = (a, b), V ′ = (a′, b′) should be perpendicular

aa′ + bb′ = 0. (2.2)

A direction vector (or just a direction) for a line L = ax + by + c is
any non-zero vector perpendicular to V = (a, b). In particular, the vector
V ⊥ = (−b, a) is a direction, and any other direction is a scalar multiple of that
vector.

Example 2.4 The line joining the two distinct points P = (p1, p2), Q =
(q1, q2) is ax + by + c = 0, where

a = p2 − q2, b = −(p1 − q1), c = p1q2 − p2q1.

Thus a direction vector associated to the line is P − Q. For instance, the line
joining P = (2, −1), Q = (2, −2) is 3x +4y −2 = 0, having direction vector
P − Q = (−4, 3).

Example 2.5 Let P , Q be distinct points. A point Z is equidistant from P , Q
when the distances from Z to P , Q are equal. That is equivalent to
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P

Z

Q

Fig. 2.3. The perpendicular bisector

|P − Z |2 = |Q − Z |2.
The set of points equidistant from P , Q is called the perpendicular bisector of
the line segment joining P , Q. (Figure 2.3.) We claim that the perpendicular
bisector is a line. Expanding both sides of the above relation we obtain

2(Q − P) • Z = |Q|2 − |P|2.
That is the equation of a line perpendicular to the direction vector Q − P of
the line joining P , Q. Note that the midpoint of the line segment joining P , Q
lies on the perpendicular bisector.

Exercise

2.3.1 In each of the following cases determine the angles between the given
lines L , L ′:

(i) L = 2x − y − 1, L ′ = x − 2y + 1,
(ii) L = 3x + 4y − 7, L ′ = 2x − 3y − 8,
(iii) L = 2x − y + 3, L ′ = 3x − y + 2.

2.4 Distance from a Point to a Line

The next result will be of significance in Chapter 8, when we discuss focal
constructions of conics. It is exceptional in this text in that it uses calculus
methods to find the stationary points of a function.

Lemma 2.4 Let L = ax + by + c be a line, and R = (x, y) a point. There is
a unique point Q on L for which the distance between Q, R is a minimum d,
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Fig. 2.4. Projection of a point on to a line

given by the formula

d2 = L(x, y)2

a2 + b2
. (2.3)

Proof The vector N = (a, b) is perpendicular to L , and T = (−b, a) is a
direction vector for L . Choose any point P on L . Then L is defined by the
formula L(Z) = N • (Z − P), and parametrized as Q(t) = P + tT . The
square of the distance from R to Q(t) is given by the function

f (t) = (R − Q(t)) • (R − Q(t)).

This function has a stationary point when its derivative with respect to the
variable t vanishes. Differentiating, we obtain

f ′(t) = −2Q′(t) • (R − Q(t)).

This expression vanishes if and only if Q′(t) = T is perpendicular to R−Q(t),
i.e. when the following relation holds, determining a unique value of t , hence
a unique point Q

0 = T • (R − P − tT ) = T • (R − P) − t (T • T ).

Moreover, it is a strict minimum of the function, since the second derivative
f ′′(t) = 2(T • T ) is positive. For that value Q = P + tT = R + s N for some
constant s, so R − P = −s N + tT . Taking the scalar product of both sides
with N , we obtain

−s = N • (R − P)

N • N
= L(x, y)

a2 + b2
.

Finally, we obtain the required formula (2.3) by observing that the minimum
value d is given by

d2 = (R − Q) • (R − Q) = −s N • −s N = s2(a2 + b2).
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The proof shows that there is a unique point Q on L for which the line
joining Q, R is perpendicular to L . That point Q is the projection of R on
to L . Equivalently, Q can be described as the nearest point to R on L . The
distance RL from R to L is defined to be |R − Q|, where Q is the projection
of R on to L .

Example 2.6 We will determine the projection of R = (2, 3) on to the line
L = 4x +3y−7, and the distance between them. In this example T = (−3, 4),
and we could choose P = (1, 1), so L is parametrized as Q(t) = (1 − 3t, 1 +
4t). The condition for T to be perpendicular to R − Q(t) is that

0 = (−3, 4) • (1 + 3t, 1 + 4t) = 5(1 − 5t).

That gives t = 1/5 so the projection of R on to L is Q = (2/5, 9/5). The
formula (2.3) then gives RL = 2, since

RL2 = L(2, 3)2

42 + 32
= (4.2 + 3.3 − 7)2

42 + 32
= 102

25
= 4.

Example 2.7 Let L = ax + by + c, L ′ = ax + by + c′ be parallel lines, and
let R = (α, β) be a point on L ′, so aα + bβ + c′=0. Then (2.3) tells us that the
distance d from R to L is determined by

d2 = L(α, β)2

a2 + b2
= (aα + bβ + c)2

a2 + b2
= (c − c′)2

a2 + b2
.

This expression depends only on L , L ′: it does not depend on the choice of
point R. For that reason d is defined to be the distance between the parallel
lines L , L ′. Note that in the special case when L , L ′ are in canonical form the
distance is just d = |c − c′|.

Exercises

2.4.1 Show that two non-vertical lines y = px + q, y = p′x + q ′ are
perpendicular if and only if pp′ = −1.

2.4.2 Find the equation of the line perpendicular to x + 2y − 4 through the
intersection of the lines 3x + 4y − 8, 2x − 5y + 3.

2.4.3 Find the line through the points P = (1, 1), Q = (4, 3), and the
perpendicular line through R = (−1, 1).

2.4.4 In each of the following cases find the projection of the point R on to
the line L , and hence determine the distance from R to L:



2.4 Distance from a Point to a Line 21

(i) L = 3x + 4y − 5, R = (2, 6),
(ii) L = 5x + 12y − 20, R = (2, 3),
(iii) L = 3x + 4y − 5, R = (4, 2).

2.4.5 Let L , L ′ be parallel lines. Show that there is a unique line L ′′ par-
allel to L , L ′ and equidistant from them. The line L ′′ is the parallel
bisector of L , L ′.
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Circles

Apart from lines there are few geometric objects of such fundamental impor-
tance to geometry as circles. In school mathematics a ‘circle’ is viewed as the
set of points (x, y) which are a constant positive distance r from a fixed point
(α, β), so defined by an equation

C(x, y) = (x − α)2 + (y − β)2 − r2 = 0. (3.1)

We will pursue the same line of thought set out in Chapter 1 for lines. Thus
we think in terms of the formula C(x, y) rather than the set of points it de-
fines. That makes it more natural to present a wider concept of ‘circle’ than is
familiar from school mathematics, better suited to a systematic development.
The resulting ‘circles’ represent a useful stepping stone to general conics since
(despite their simplicity) circles illustrate some of their vagaries. For instance,
their zero sets can be infinite, a single point or empty. In the first case we show
that the zero set determines the ‘circle’ up to constant multiples, using the ba-
sic idea expounded in Section 1.3. In the final section we look at the way in
which circles intersect lines. That can viewed as an introduction to a recurring
theme of this text, namely the way in which conics intersect lines, a topic we
will expand upon in Chapter 4.

3.1 Circles as Conics

The expression in (3.1) is an example of a quadratic function on the plane, a
function Q given by a formula of the following form, where the coefficients a,
2h, b, 2g, 2 f , c are such that at least one of a, b, h is non-zero

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Two quadratic functions Q, Q′ are scalar multiples of each other when there
exists a real number λ �= 0 with Q′ = λQ: the resulting equivalence classes are

22
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known as conics. For instance, the three quadratic functions below all define
the same conic

x2 + y2 − 1, 2x2 + 2y2 − 2, −x2 − y2 + 1.

The conic arising from a quadratic function Q will be denoted by the same
symbol: on the occasions when we do need to draw a distinction we will delib-
erately use the term ‘quadratic function’. Associated to any quadratic function
Q is its zero set

{(x, y) ∈ R
2 : Q(x, y) = 0}.

Note that any scalar multiple of Q has the same zero set, so the concept makes
perfect sense for conics. Instead of saying that P = (x, y) is a point in the
zero set, we shall (for linguistic variety) say that P lies on Q, or that Q passes
through P .

3.2 General Circles

A circle is defined to be a conic (�) with the property that a = b and h = 0, so
can be written in the following form with a �= 0

a(x2 + y2) + 2gx + 2 f y + c. (3.2)

Dividing through by the common coefficient of x2, y2 we see that any circle is
defined by a quadratic function C in the canonical form displayed below

C(x, y) = x2 + y2 − 2αx − 2βy + γ. (3.3)

The centre of C is the point (α, β). For a fixed centre the nature of the zero set
depends on the value of the constant γ . To make this explicit, write C in the
following form, where k = γ − α2 − β2

C(x, y) = (x − α)2 + (y − β)2 + k. (3.4)

We call C a real circle when k < 0, a point circle when k = 0, and a virtual
circle when k > 0.

Example 3.1 The case of greatest physical interest is that of the real circle. In
that case we can write k = −r2, where r is a positive constant, the radius of
C . Note that the centre of a real circle C does not lie on the circle. Also, the
zero set of C is infinite, since the standard parametrization below shows that
it contains infinitely many points

x(θ) = α + r cos θ, y(θ) = β + r sin θ. (3.5)
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Example 3.2 The situation changes dramatically for the point and virtual cir-
cles. In the case k = 0 of a point circle we have C(x, y) ≥ 0 for all x , y with
equality if and only if x = α, y = β: thus the zero set of a point circle is a
single point, namely the centre. And in the case k > 0 of a virtual circle we
have C(x, y) > 0 for all x , y, so the zero set of a virtual circle is empty.

Virtual circles reveal a disturbing feature of conics. For distinct positive
values k1, k2 of k in (3.4) we obtain virtual circles C1, C2 whose zero sets
coincide (both are empty) though C1, C2 are not scalar multiples of each other:
thus a conic is not necessarily determined by its zero set. That is one reason
why we have to proceed more carefully with conics than we did with lines.

Exercises

3.2.1 In each of the following cases determine the centre and type of the
given circle, and in the case of a real circle its radius:

(i) x2 + y2 − 6x + 2y − 39,
(ii) 4x2 + 4y2 − 4x − 5y + 1,
(iii) x2 + y2 − 2ax .

3.2.2 Let A = (1, 0), B = (−1, 0) and let λ > 0. Show that for λ �= 1 the
set of points P = (x, y) for which |P A| = λ|P B| is the zero set of
a real circle centred on the x-axis. Investigate how the circle changes
as λ varies.

3.3 Uniqueness of Equations

We observed above that virtual circles are not determined by their zero sets.
However, real circles do have this property. To prove this we adopt the same
simple-minded approach as we did for lines. The circle C displayed in (3.3)
has three arbitrary coefficients. We would reasonably expect these to be de-
termined by three conditions, for instance that C should pass through three
general points. Indeed, that proves to be the case.

Theorem 3.1 Through any three non-collinear points P1 = (x1, y1), P2 =
(x2, y2), P3 = (x3, y3) there is a unique real circle

C(x, y) = x2 + y2 − 2αx − 2βy + γ.

Proof The condition for the circle to pass through the three points is that the
following relations hold, representing a system of three linear equations in the
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three unknowns α, β, γ


2αx1 + 2βy1 − γ = x2
1 + y2

1

2αx2 + 2βy2 − γ = x2
2 + y2

2

2αx3 + 2βy3 − γ = x2
3 + y2

3 .

By linear algebra these equations have a unique solution provided the 3 × 3
matrix of coefficients has a non-zero determinant. That however is the condi-
tion of Example 1.4 for the points P1, P2, P3 to be non-collinear.

Thus a real circle is determined by its zero set, meaning that if two real
circles C , C ′ have the same zero sets they are scalar multiples of each other:
we have only to pick three distinct points in the common zero set, and apply
the result. That justifies the time-honoured practice of referring to the equation
C = 0 of a circle C . Strictly, that is an abbreviation for the zero set of C , but
since the zero set determines C (up to scalar multiples) it is not too misleading.
Of course, the question arises as to what extent general conics are determined
by their zero sets. The answer is as follows.

Theorem 3.2 Let Q, Q′ be conics having the same zero set. Then Q, Q′ co-
incide, provided the common zero set is infinite. (The Uniqueness Theorem.)

The proof is a natural extension of that for Theorem 3.1. For the reader’s
convenience it is delayed till Chapter 17. The Uniqueness Theorem belongs to
a central theme in algebraic geometry, developed in EGAC: its practical import
is that provided the zero set is infinite it makes sense to refer to the ‘conic’
Q(x, y) = 0. Strictly speaking, that is just a shorthand notation for the zero
set of a quadratic polynomial Q, but the Uniqueness Theorem guarantees that
any other quadratic polynomial Q′ with the same zero set is a scalar multiple
of Q, so defines the same conic.

Exercises

3.3.1 In each of the following cases find the circle through the given points
P , Q, R:

(i) P = (0, 0), Q = (a, 0), R = (0, b),
(ii) P = (1, 0), Q = (2, 3), R = (−1, −1),
(iii) P = (−1, 1), Q = (−1, 3), R = (2, 4).

3.3.2 A set of points is concyclic when there exists a circle passing through
every point in the set. Show that the points (−3, 11), (5, 9), (8, 0),
(6, 8) are concyclic, and that they lie on a circle with centre (−1, 2).
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Fig. 3.1. How circles intersect lines

3.4 Intersections with Lines

In this section we introduce a recurring theme of this text, the question of
how conics intersect lines. For the moment we confine ourselves to the more
specific question of how a circle C intersects lines. A sketch suggests that C
will intersect a line L in at most two points. That is easily verified. Suppose
L is parametrized as x(t) = u + t X , y(t) = v + tY . Substituting in (3.3) we
obtain a quadratic equation in t

0 = C(u + t X, v + tY ) = pt2 + qt + r.

In any example the coefficients are easily calculated. For the moment, all that
is important is that p = X2 + Y 2, so is non-zero. Thus the quadratic has two
distinct roots, one repeated root, or no roots. It follows that C meets L in two
distinct points, just one point, or not at all. A chord of C is a line L meeting
C in two points, called the ends of the chord: exceptionally the intersection
is a single point, in which case we say that L touches C at the point with
parameter t . A diameter of a circle is a chord passing through the centre.

Example 3.3 A sketch suggests that any line through the centre of a real circle
is a diameter. Let us verify that for the real circle (3.1) with centre (α, β) and
radius r . Let L be a line through the centre, parametrized in the following form
for some fixed angle θ

x(t) = α + t cos θ, y(t) = β + t sin θ.

Substituting in (3.1) gives t2 = r2 with distinct solutions t = ±r . Substituting
in the displayed relations we obtain the points of the standard parametrization
(3.5) corresponding to the angles θ , θ + π .

Example 3.4 Consider the intersections of the circle x2 + y2 = 25 and the
line x − 7y + 25 = 0. Parametrizing the line as x(t) = 3 + 7t , y(t) = 4 + t
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and substituting in the circle we get a quadratic 50t (t + 1) = 0. The roots are
t = 0, −1 corresponding to the two intersections (3, 4), (−4, 3). If instead we
take the line 3x + 4y − 25 = 0 parametrized as x(t) = 3 − 4t , y(t) = 4 + 3t
the quadratic is 25t2 = 0 with a repeated root t = 0, so the line touches the
circle at the sole intersection (3, 4).

Exercise

3.4.1 Let P = (a, b), P ′ = (a′, b′) be distinct points. Show that there is a
unique circle for which P , P ′ are the ends of its diameter, and having
the equation displayed below. For fixed P , describe the locus of points
P ′ for which the circle passes through the origin

(x − a)(x − a′) + (y − b)(y − b′) = 0.

3.5 Pencils of Circles

By the pencil of circles spanned by two distinct circles C , D we mean the set
of all circles of the form λC + µD where λ, µ are constants, not both zero.
The concept is wholly analogous to that of a pencil of lines, introduced in
Section 1.6, and has the same key intersection property that any two distinct
elements C ′, D′ in the pencil have the same intersection as C , D: the proof is
identical to the line case. Note that there is a unique exceptional ratio λ : µ

for which λC + µD fails to be a quadratic function: for all other ratios it is a
quadratic function defining a circle. We can be more explicit by writing C , D
in their canonical forms{

C(x, y) = x2 + y2 − 2αx − 2βy + γ

D(x, y) = x2 + y2 − 2α′x − 2β ′y + γ ′.
(3.6)

With those choices the exceptional ratio is −1 : 1, and the corresponding ele-
ment of the pencil is

L(x, y) = 2(α − α′)x + 2(β − β ′)y − (γ − γ ′). (3.7)

Provided C , D have distinct centres, L is a line, known as the radical axis of the
circles. Exercise 3.5.8 shows that any two distinct circles in the pencil λC+µD
have the same radical axis L . By the intersection property, the intersections of
C , D coincide with those of C or D with the line L . The results of the previous
section show that a circle intersects a line in two distinct points, just one point,
or not at all. We can therefore conclude that any two distinct circles intersect
in two distinct points, just one point, or not at all. In particular, the circles
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Fig. 3.2. Three ways in which circles can intersect

intersect in a single point exactly when L touches C , D at the same point:
in that case we say that C , D touch at that point. A special case arises when
C , D are concentric, i.e. have the same centre. In that case α = α′, β = β ′,
and L(x, y) = γ ′ − γ is a non-zero constant function: it follows that distinct
concentric circles do not intersect. However obvious that fact may be visually,
it does require formal proof!

Example 3.5 The radical axis of the circles displayed below is the line x = 0.
Substituting x = 0 in the first circle gives y2 + 1 = 0, having no solutions.
The radical axis does not therefore meet the first circle, and the circles do not
intersect

x2 + y2 − 3x + 1 = 0, 2x2 + 2y2 − 7x + 2 = 0.

Example 3.6 Recall that the perpendicular bisector L of the line segment
joining two distinct points P = (α, β), Q = (α′, β ′) was introduced in Exam-
ple 2.5 as the locus of points equidistant from P , Q. It is the line with equation

2(Q − P) • z = |Q|2 − |P|2.

We can think of L in another way. Let C , D be the point circles with centres P ,
Q so having the canonical forms (3.6) with γ = α2 +β2, γ ′ = α′2 +β ′2. Then
comparison of the displayed equation with (3.7) shows that L is the radical
axis of C , D.

Example 3.7 Let C , D be non-concentric circles. We claim that the centres of
the circles λC + µD all lie on the centre line, the line M joining the centres of
C , D. To prove this, take C , D to be in their canonical forms (3.6), and define
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constants s, t with s + t = 1 by

s = λ

λ + µ
, t = µ

λ + µ
.

With these choices the canonical form for λC + µD is given by the
expression

x2 + y2 − 2(sα + tα′)x − 2(sβ + tβ ′)y + (sc + tc′).

It follows that its centre is the point s(α, β) + t (α′, β ′) on the parametrized
line joining the centres (α, β), (α′, β ′) of C , D. The formula (1.1) shows that
the centre line is

M(x, y) = (β − β ′)x − (α − α′)y + (αβ ′ − α′β) = 0.

The condition (2.2) for perpendicularity shows that for any two non-
concentric circles C , D the radical axis L is perpendicular to the centre line
M . The next example illustrates this general fact.

Example 3.8 Consider the special case of the preceding example when the
radical axis is the y-axis. Looking at (3.7) we see that is the case if and only
if β = β ′ = 0 and c = c′. In that case the centre line is the x-axis, and the
canonical form of the circle λC + µD has the following shape for a constant
ν depending on λ, µ

x2 + y2 − 2νx + c = 0.

The nature of the family depends on the sign of c, and is best understood by
writing the equation in the form

(x − ν)2 + y2 = ν2 − c.

When c is negative (say c = −k2) all the circles are real, with radius ≥ k the
value ν = 0 giving the circle of minimal radius k, centre the origin; moreover,
all the circles have common points (0, ±k) on the radical axis. When c is pos-
itive (say c = k2) the circles are real only in the range −k < ν < k and fail
to cut the radical axis: outside this range they are virtual, except for the two
point circles at (±k, 0). The remaining case c = 0 is transitional, with all the
circles real, touching the radical axis at the origin. The common points of the
case c < 0 coincide at the origin, as do the point circles of the case c > 0.
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c < 0

c > 0

c = 0

Fig. 3.3. The family of circles in Example 3.8

Exercises

3.5.1 In each of the following cases show that the given line L touches the
given circle C , and state the point of contact:

(i) L = 2x + 3y, C = x2 + y2 + 3y + 2x ,
(ii) L = 3x − 4y − 10, C = x2 + y2 + 2x − 6y,
(iii) L = 5x − 12y − 45, C = x2 + y2 + 16x − 14y − 56.

3.5.2 In each of the following cases find the radical axis of the given circles,
and their intersections:

(i) x2 + y2 − x − 3y + 3, x2 + y2 + 8x − 6y − 3,
(ii) x2 + y2 − 4x + 6y + 8, x2 + y2 − 10x − 6y + 14,
(iii) x2 + y2 − 6x − 6y − 14, x2 + y2 − 2.
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3.5.3 Find the circles touching the lines x = 0, y = 0, x = 2a, where a is
a positive constant.

3.5.4 Find the circles touching the lines x = 2, y = 5, 3x − 4y = 10.
3.5.5 Find the circles which touch both the coordinate axes and pass

through the point (6, 3).
3.5.6 Show that the three radical axes associated to three circles with dis-

tinct centres are concurrent or parallel.
3.5.7 Show that if two of the radical axes associated to three circles with

distinct centres coincide, then all three coincide.
3.5.8 Let C , D be circles with distinct centres and radical axis the line L .

Show that any two distinct circles C ′, D′ in the pencil λC + µD also
have distinct centres, and the same radical axis.

3.5.9 Show that for λ �= −1 the formula below defines a circle, that the
centre lies on the line 3x + y − 5 = 0, and that the radical axis of
any two circles in the family is the line x + y = 0. Further, show that
the circles are real if and only if −3 < λ < 0, and find the two point
circles in the family

(x − 1)2 + (y − 2)2 + λ(x2 + y2 + 2x + 5) = 0.
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General Conics

In this chapter we take a first look at more general conics than circles, before
launching ourselves into more detailed considerations. One of our long-term
objectives will be to separate out general conics into a small number of types,
distinguished by their underlying geometry. We start by introducing the reader
to the ‘standard’ conics which will play a dominant role in this text. They are
not simply examples of conics: they turn out to be models of the physically
most important conics, in a sense made precise in Chapter 15. The qualitative
form of their zero sets can be determined by looking carefully at the way in
which they intersect the pencils of horizontal and vertical lines, and offers in-
sight into the computer generated illustrations. Like lines and circles the ‘stan-
dard’ conics admit natural parametrizations, of practical value in elucidating
their geometry.

We will need simple and effective means for distinguishing one type of
conic from another. As a first step in this direction we introduce three easily
calculated ‘invariants’ of a general conic, namely the trace invariant τ , the delta
invariant δ, and the discriminant �. All three are easily calculated expressions
in the coefficients, from which we can read off useful geometric information.
However, their true significance does not appear till the final chapter, where
it is shown that they are ‘invariant’ in a strictly defined sense. It is the delta
invariant and the discriminant which yield the most useful information, and
provide us with a first crude subdivision of conics into types. By contrast, the
trace invariant will play only a minor role.

Section 4.4 considers the broad question of how a general conic Q intersects
a line L . The situation is analogous to that of the previous chapter, where we
saw that circles intersect lines in at most two points. However, when dealing
with a general conic Q there is one important exception, namely that every
point on L may be a point of Q: the function of the final section is to establish
the Component Lemma, that L is then actually a factor of Q.

32
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Fig. 4.1. A standard parabola

4.1 Standard Conics

The circles of Chapter 3 were our first examples of conics. In the following
examples we introduce three families of ‘standard’ conics which play a major
role in the subject. All the standard conics have infinite zero sets, so by the
Uniqueness Theorem are determined by their zero sets. An important feature
of standard conics is that they have at least one ‘axis’ of symmetry. In Chapter 7
we will formally introduce the concept of ‘axis’ for a general conic, and explain
how to find the axes. It will turn out that any conic has at least one ‘axis’,
and that the axes of the standard conics are precisely those described in the
following examples.

Example 4.1 Let a be a positive constant. The standard parabola with modulus
a is the conic with equation

y2 = 4ax . (4.1)

Figure 4.1 illustrates the zero set, traced using a computer program. However,
we can predict its qualitative form by looking at its intersections with the pen-
cils of horizontal and vertical lines. A vertical line x = c meets Q exactly
twice for c > 0, just once for c = 0, and not at all for c < 0. By contrast,
any horizontal line y = d meets Q at exactly one point. The line y = 0 is
the axis of the standard parabola: the curve has an evident symmetry in that
line.
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Fig. 4.2. A standard ellipse

Example 4.2 Let a, b be constants with 0 < b < a. The standard real ellipse
with moduli a, b is the conic with the equation

x2

a2
+ y2

b2
= 1. (4.2)

Figure 4.2 illustrates the zero set. A vertical line x = c meets Q exactly twice
for −a < c < a, just once for c = a, −a, and not at all for c < −a or c > a.
Likewise, horizontal lines y = d meet Q exactly twice for −b < d < b, just
once for d = b, −b, and not at all for d < −b or d > b. The coordinate axes
are the axes of the standard ellipse: the curve has evident symmetries in each
line. The major axis y = 0 meets the ellipse at the points (±a, 0) distant 2a
apart, whilst the minor axis x = 0 meets the ellipse at the points with (0, ±b)

distant 2b apart.

The standard ellipses do not include real circles since the moduli are subject
to the constraint that 0 < b < a, so the coefficients of x2, y2 cannot be equal.
That is a deliberately imposed constraint, for a reason that will become clear
in Chapter 8. Nevertheless, it is profitable to think of a real circle (of radius a,
and centre the origin) as the limiting case of standard ellipses as b → a.

Example 4.3 Let a, b be positive constants. The standard hyperbola with
moduli a, b is the conic with the equation

x2

a2
− y2

b2
= 1. (4.3)

Figure 4.3 illustrates the zero set. A vertical line x = c meets Q exactly twice
for c > a or c < −a, just once for c = a, −a, and not at all for −a < c < a.
However, any horizontal line y = d meets Q exactly twice. Thus the zero set
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Fig. 4.3. A standard hyperbola

of a standard hyperbola splits into two ‘branches’, namely the positive branch,
defined by x ≥ a, and the negative branch, defined by x ≤ −a. The coordinate
axes are the axes of the standard hyperbola: the curve has evident symmetries
in each line. The transverse axis y = 0 meets the hyperbola at two points with
x = ±a, distant 2a apart, whilst the conjugate axis x = 0 fails to meet the
hyperbola.

4.2 Parametrizing Conics

We have already met parametrizations of lines and real circles. They are use-
ful devices, often easier to deal with than the defining function. For that rea-
son it is helpful to extend the concept to general conics. The function of this
section is to present a fairly minimal account, sufficient for the rest of this
text. A parametrization of a conic Q comprises two smooth functions x(t),
y(t) defined on an open interval I satisfying the following relation for all t
in I

Q(x(t), y(t)) = 0.

Thus I is a set of real numbers t (the parameters) satisfying an inequality a <

t < b, where we allow a = −∞, b = ∞. The meaning of the term ‘smooth’
is that at every parameter t both x(t) and y(t) have derivatives of all orders.
In all our examples it will be self evident that x(t), y(t) are ‘smooth’ in this
sense. Mostly, the domain I will be the whole real line R: only infrequently,
when the domain is not R, will we specify it. The image of the parametrization
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is the set of all points (x(t), y(t)) with t in I , so is contained in the zero set of
Q. There is no reason to suppose that every point in the zero set will be in the
image: for instance, both x(t) and y(t) might be constant, with image a single
point. The parametrization is regular when for any parameter t at least one
of the derivatives x ′(t), y′(t) is non-zero: a parameter t for which x ′(t) = 0,
y′(t) = 0 is said to be irregular. Here are some explicit parametrizations of the
standard conics; in later chapters we will describe techniques for parametrizing
general conics.

Example 4.4 Consider the standard parabola y2 = 4ax with modulus a > 0.
Each line in the pencil of lines y = 2at parallel to the x-axis meets the parabola
just once, at the point where x = at2. In this way we obtain the regular parame-
trization

x(t) = at2, y(t) = 2at. (4.4)

Example 4.5 Consider the standard ellipse with moduli a, b for which 0 <

b < a. The x-coordinate of any point on the ellipse satisfies the inequality
−a ≤ x ≤ a, so can be written x = a cos t for some t . Substituting in the
equation of the ellipse we obtain y = ±b sin t . The ‘+’ option gives a regular
parametrization of the ellipse, in terms of the eccentric angle t , tracing the
ellipse anticlockwise

x(t) = a cos t, y(t) = b sin t. (4.5)

The ‘−’ option gives another regular parametrization of the ellipse, tracing the
curve clockwise. Of course the argument applies equally well when b = a: in
that case we recover the parametrization of the circle of radius a, centre the
origin in Example 3.1.

The parametrization of a standard hyperbola is more thought provoking than
that of a standard ellipse. One approach is to replace the trigonometric func-
tions by hyperbolic functions.

Example 4.6 Let (x, y) be a point satisfying the equation of the standard
hyperbola with moduli a, b. Glancing at the graph of the sinh function we see
that we can write y = b sinh t for a unique real number t . Then, substituting
in the equation we see that x = ±a cosh t . The positive and negative branches
are then parametrized as

x(t) = ±a cosh t, y(t) = b sinh t. (4.6)



4.3 Matrices and Invariants 37

The choice of the hyperbolic functions in this example is by no means
mandatory. Indeed, the only property of the sinh function we have used is that it
is smooth and bijective. We could just as well take the tangent function, which
has the same property.

Example 4.7 For any point (x, y) on the standard hyperbola with moduli a, b
we can write y = b tan t for some t with −π < 2t < π . Substituting for y in
the equation we obtain x = ±a sec t , leading to two further parametrizations
of the positive and negative branches

x(t) = ±a sec t, y(t) = b tan t.

Exercises

4.2.1 Show that the standard parametrization (3.5) of a real circle is regular.
What is its image?

4.2.2 Show that x(t) = 2r cos2 t , y(t) = 2r sin t cos t is a regular parame-
trization of the real circle of radius r , centre (r, 0).

4.2.3 For the parametrization x(t) = at2, y(t) = 2at of the standard
parabola, show that the chord through the points with parameters t ,
t ′ has equation

(t + t ′)(y − 2at) = 2(x − at2).

4.2.4 Show that x(t) = cos4 t , y(t) = sin4 t is a parametrization of the
parabola (x − y − 1)2 = 4y. Find the irregular parameters, and their
images on the parabola.

4.2.5 Show that the lines joining points with the same parameter t on the
ellipse x(t) = a cos t , y(t) = b sin t and the hyperbola x(t) = a sec t ,
y(t) = b tan t comprise a pencil.

4.3 Matrices and Invariants

One feature of a quadratic function is that it can be succinctly described by a
matrix. We adopt the standard notation introduced in the last chapter

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

To the general quadratic function (�) we associate the 3 × 3 symmetric matrix



38 General Conics

Table 4.1. Non-degenerate classes

name δ �

ellipses δ > 0 � �= 0
parabolas δ = 0 � �= 0
hyperbolas δ < 0 � �= 0

displayed below

A =

a h g

h b f
g f c


 . (4.7)

Writing z for the row vector z = (x, y, 1), and zT for its transposed column
vector, we see that Q can be written usefully in terms of its associated matrix

Q(x, y) = z AzT . (4.8)

The matrix A gives rise to three expressions which play a significant role in
the study of conics, namely the invariants τ , δ, � defined as follows

τ = a + b, δ =
∣∣∣∣a h
h b

∣∣∣∣ , � =
∣∣∣∣∣∣
a h g
h b f
g f c

∣∣∣∣∣∣ . (4.9)

Bear in mind that the invariants are associated to the quadratic function Q, as
opposed to the conic. When we multiply Q by a scalar λ �= 0 we multiply all
its coefficients by λ, and hence τ , δ, � by λ, λ2, λ3 respectively. Although that
changes the invariants, it does not change the equalities and inequalities

τ = 0, δ = 0, � = 0, τ �= 0, δ > 0, δ < 0, � �= 0.

The discriminant � is the dominant invariant, with the delta invariant δ playing
a lesser role, and the trace invariant τ sitting quietly in the wings. The conics
of greatest interest are non-degenerate, meaning that the discriminant is non-
zero: of these there are three broad types, displayed in Table 4.1. Ellipses split
naturally into two classes, namely real ellipses having non-empty zero sets,
and virtual ellipses having empty zero sets; only the former are geometrically
significant.

Example 4.8 We leave the reader to check that the invariants of the general
circle C in canonical form (3.2) are given by the relations

τ = 2, δ = 1, � = c − α2 − β2.
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It follows that any real circle is in the real ellipse class, any virtual circle is
in the virtual ellipse class, and any point circle is degenerate. Likewise, the
reader will readily check that the standard parabolas, ellipses, and hyperbolas
are indeed parabolas, real ellipses, and hyperbolas in the sense of the definition
just given.

Exercises

4.3.1 Show that there does not exist a non-zero quadratic polynomial Q for
which the invariants τ = 0, δ = 0.

4.3.2 In each of the following cases, calculate the invariants of the given
conic, and hence determine its class:

(i) 5x2 + 6xy + 5y2 − 4x + 4y − 4,
(ii) 4x2 − 4xy + y2 − 10y − 19 = 0,
(iii) 2x2 − xy − 3y2 + 4x − 1 = 0.

4.3.3 In each of the following cases calculate the invariants of the given
conic in terms of λ, find the values for which it degenerates, and the
conic class when it is non-degenerate:

(i) 2y(x − 1) + 2λ(x − y),
(ii) λ(x2 + y2) − (x − 1)2,
(iii) x2 + t (t + 1)y2 + 2 − 2λxy + 2x .

4.4 Intersections with Lines

We gained some feel for the geometry of the standard conics by looking care-
fully at their intersections with lines. That suggests it will be profitable to
understand better how general conics intersect lines. It is a fruitful interac-
tion, leading to useful insights. Indeed it turns out to be a fundamental idea in
studying general plane curves, developed in EGAC and EGCD. We have already
observed in Section 3.4 that a circle meets a line L in at most two points. Our
next objective is to show that a general conic Q has the same property, save for
the exceptional case when every point on L is a point of Q.

Lemma 4.1 Let L be a line, and Q a conic. Then L intersects Q in two distinct
points, one point, or no points; otherwise, every point on L is a point on Q.

Proof Let L be a line in the direction (X, Y ) through a point (u, v), parametri-
zed as x(t) = u + t X , y(t) = v + tY , and write

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)
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The values of t for which (x(t), y(t)) lies on Q are given by φ(t) = 0, where

φ(t) = Q(x(t), y(t)) = Q(u + t X, v + tY ). (4.10)

Since φ(t) is obtained by substituting linear terms in t into a quadratic func-
tion, it will be a quadratic in t , so have the form

φ(t) = pt2 + qt + r. (4.11)

Provided at least one coefficient in (4.11) does not vanish, there are either two
distinct roots, one root, or no roots: otherwise, all three coefficients vanish, and
every value of t is a root.

We call φ(t) the intersection quadratic. The reader is invited to verify the
explicit formulas for the coefficients displayed below: they show that p de-
pends solely on (X, Y ), that q depends on both (X, Y ) and (u, v), and that r
depends solely on (u, v)


p = a2 X2 + 2h XY + b2Y 2

q = Qx(u, v)X + Qy(u, v)Y
r = Q(u, v).

(4.12)

Example 4.9 We will determine the intersections of the conic Q and the line
L defined below

Q(x, y) = x2 + 2xy − 3y2 + 8y + 3, L(x, y) = 2x − y + 3.

The line L passes through the point (−1, 1), and has direction (1, 2), so can be
parametrized as x(t) = −1 + t , y(t) = 1 + 2t . Substituting in Q, we find that
φ(t) = −7(t2 − 1). Thus φ(t) has zeros t = 1, −1 and Q intersects L at the
points (0, 3), (−2, −3) with these parameters.

It is possible for the intersection quadratic to have a repeated root. To pursue
this possibility a little further let us recall basic facts about quadratic equations.
By the Factor Theorem of school algebra, t0 is a root of the quadratic φ(t) = 0
if and only if (t − t0) is a factor of φ(t). Recall that t0 is a repeated root
when (t − t0)2 is a factor of φ(t), in which case we say that L touches Q at
the point with parameter t0. In particular, when φ(t) is identically zero (all its
coefficients are zero) every value t0 is a repeated root of φ(t) = 0.

Example 4.10 Consider the intersections of the conic Q and the line L defined
below

Q(x, y) = x2 + y2 − 5, L(x, y) = 2x + y − 5.
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The line L passes throught the point (3, −1), and has direction (1, −2), so can
be parametrized as x(t) = 3 − t , y(t) = 2t − 1. Substituting in Q we get
φ(t) = 5t2 − 10t + 5 = 5(t − 1)2, with a repeated root t = 1. Thus L touches
Q at the point on L having parameter t = 1, namely the point (2, 1).

Example 4.11 Let L be a line in the direction (X, Y ), and let Q be a conic.
Then L touches Q when the resulting intersection quadratic pt2 + qt + r has
a repeated zero. Although the coefficients depend on the direction, whether
L touches Q is independent of the choice. We can see this as follows. Any
other direction for L is a constant multiple (λX, λY ) of the given one, with
λ non-zero. And looking at the formulas (4.12) we see that the corresponding
intersection quadratic is pλ2t2+qλt+r . It remains only to observe that in each
case the condition for the quadratic to have a repeated zero is that q2 − pr = 0.

Exercises

4.4.1 In each of the following cases find the intersections of the given line
L with the given conic C :

(i) L = x − 7y + 25, Q = x2 + y2 − 25,
(ii) L = 4x + 3y − 11, Q = 2x2 + 3y2 − 11,
(iii) L = 3x − 2y + 1, Q = 6x2 + 11xy − 10y2 − 4x + 9y.

4.4.2 Find the chord of the parabola y2 = 8x whose midpoint is the point
(2, −3).

4.4.3 By considering its intersections with the line y = 0, show that the
conic Qt displayed below has a non-empty zero set if and only if
t > 0

Qt (x, y) = t (x2 + y2) − (x − 1)2.

4.5 The Component Lemma

We conclude this chapter by completing our account of how general conics in-
tersect lines. Lemma 4.1 allowed an exceptional situation, namely that a conic
Q might intersect a line L at every one of its points. That can certainly happen:
for instance the conic Q(x, y) = xy meets the lines x = 0, y = 0 at every
one of their points. A conic Q is reducible when there exist lines L , L ′ for
which Q = L L ′: in that case L , L ′ are the components of Q, and Q is the joint
equation of L , L ′. Otherwise Q is irreducible. Each component of a reducible
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conic meets Q at every one of its points. Note that the zero set of a reducible
conic Q is infinite, since it is the union of the zero sets of its components.

Reducible conics Q can be distinguished geometrically by the way in which
the components L , L ′ intersect. According to Example 1.5 there are three pos-
sibilities, illustrated by Figure 1.1. The first possibility is that L , L ′ have dis-
tinct directions: in that case we refer to Q as a real line-pair, and to the unique
point of intersection of L , L ′ as the vertex. Otherwise L , L ′ have the same
direction: when they are parallel Q is a real parallel line-pair, and when they
coincide Q is a repeated line.

Example 4.12 The conic Q = x2 − xy − 2y2 + 2x + 5y − 3 reduces, since
Q = L L ′, where L = x + y − 1, L ′ = x − 2y + 3. Indeed Q is a line-pair
since the components have different directions.

The object of this section is to prove the Component Lemma, that the only
way in which a line L can meet a conic Q at every point of L is when L is a
component. The proof depends on the following technical lemma, that we can
‘divide’ Q by L to obtain a ‘quotient’ L ′ and a ‘remainder’ J .

Lemma 4.2 Let Q be a conic, and let L be a line not parallel to the y-axis.
There is a unique line L ′, and a unique quadratic J (x) with

Q(x, y) = L(x, y)L ′(x, y) + J (x). (4.13)

Proof Write L(x, y) = αx + βy + γ , L ′(x, y) = α′x + β ′y + γ ′: the hy-
pothesis, that L is not parallel to the y-axis, means that β �= 0. We can take
Q to be given by (�). Equating coefficients of the monomials y2, xy, y in both
sides of (4.13) gives three linear equations in α′, β ′, γ ′

b = ββ ′, 2h = αβ ′ + α′β, 2 f = βγ ′ + β ′γ.

The determinant of the 3×3 matrix of coefficients is −β3, hence non-zero. By
linear algebra there is a unique solution α′, β ′, γ ′, yielding a unique line L ′. It
remains to note that J (x) is uniquely determined by the requirement that

Q(x, 0) = L(x, 0)L ′(x, 0) + J (x).

Assuming instead that L is not parallel to the x-axis, we obtain a similar
conclusion, with J (x) replaced by a quadratic K (y). The only difference in
the proof is that the line L ′ is determined by equating the coefficients of x2,
xy, x . Here is the promised pay-off.
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Lemma 4.3 Suppose that every point on the line L lies on a conic Q. Then
Q = L L ′ for some line L ′. In particular, that is the case when L meets Q in
more than two points. (The Component Lemma.)

Proof We can assume L it is not parallel to the y-axis. By Lemma 4.2 there
is a line L ′ and a quadratic J (x) for which (4.13) holds. For every x there
is a unique value of y for which L(x, y) = 0, and hence Q(x, y) = 0. That
means that J (x) = 0 for all x : since a non-zero quadratic has ≤ 2 roots, that
means J is identically zero, so Q = L L ′. Finally, if L meets Q in ≥ 3 points,
then Lemma 4.1 tells us that every point on L lies on Q, so we reach the same
conclusion.

Example 4.13 The reader is left to check that every point on the line L(x, y) =
2x − y − 1 lies on the conic Q below, by substituting y = 2x − 1 in Q(x, y)

to obtain a zero expression

Q(x, y) = 2x2 + xy − y2 + x − 2y − 1.

By the Component Lemma L is a factor of Q. Indeed Q = L L ′, where
L ′(x, y) = x + y + 1.

Exercises

4.5.1 Show that the components of a real line-pair Q are perpendicular if
and only if the trace invariant τ vanishes.

4.5.2 Let L , L ′ be lines through the origin having the joint equation ax2 +
2hxy + by2 = 0. Show that the joint equation of the lines M , M ′

perpendicular to L , L ′ is bx2 − 2hxy + ay2 = 0.
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Centres of General Conics

A striking feature of a circle is that there is a point (the centre) which does not
lie on the circle itself, yet is crucial to understanding the geometry of the curve.
The concept of ‘centre’ is by no means unique to circles. Our first step is to
introduce the idea for general conics: that provides the material for Section 5.1.
However, general conics do not always have centres, presenting us with one
crude way of distinguishing some conics from others. For that remark to be
useful we need to have an efficient practical technique to find the centres of a
conic, if any. That is the function of Section 5.2. These considerations enable
us to distinguish three broad classes of conics, namely those having a unique
centre, those having no centre, and those having a line of centres. And that will
provide a basis for the classification of conics in Chapter 15.

5.1 The Concept of a Centre

We are used to thinking of the centre of a circle as the point equidistant from
the points in its zero set. There is however another approach, capable of gen-
eralization. Any line through the centre meets the circle in two distinct points,
and the centre is the midpoint of the resulting chord. That suggests how we
might extend the concept to general conics. Let W = (u, v) be a fixed point.
By central reflexion in W we mean the mapping of the plane defined by the
rule (x, y) → (2u − x, 2v − y): a special case arises when W is the origin, and
central reflexion is given by (x, y) → (−x, −y). The key geometric property
is that the midpoint of the line joining a point (x, y) to its central reflexion
(2u − x, 2v − y) in W is the point W itself. We say that W is a centre for a
conic Q when the following identity holds

Q(x, y) = Q(2u − x, 2v − y). (5.1)

Suppose (u, v) is a centre for Q. Then it is an immediate consequence of
the definition that a point (x, y) is in the zero set of Q if and only if its central

44
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(x, y)
Q

(u, v)

(2u − x, 2v − y)

Fig. 5.1. The concept of a centre

reflexion (2x −u, 2y −v) is. However, it is worth remarking that the definition
makes sense whether or not the zero set of Q contains points.

Example 5.1 The point (α, β) is a centre of the circle Q below, since it is
unchanged when x , y are replaced by 2α − x , 2β − y. That confirms that
the use of the term ‘centre’ in Chapter 3 is consistent with the above general
definition

Q(x, y) = (x − α)2 + (y − β)2 + γ.

5.2 Finding Centres

A conic Q is central when it has at least one centre. We need a practical pro-
cedure for deciding whether or not Q is central, and if so finding centres.
That is the motivation for the following definition. By translation of the plane
through a vector (u, v) we mean a mapping of the plane defined by a formula
(X, Y ) → (x, y), where x = X + u, y = Y + v. On a geometric level, trans-
lation represents a sliding of the plane in the direction (u, v). Given a conic Q
and a vector (u, v) we define the translate of Q through (u, v) to be the conic
R obtained from Q via the substitutions x = X +u, y = Y +v, or symbolically

R(X, Y ) = Q(X + u, Y + v).

It is worth noting two practicalities. The first is that, although the linear
and constant terms in Q change under translation, the quadratic terms remain
unchanged. And the second is that the constant term in R(X, Y ) is obtained by
setting X = 0, Y = 0 so is Q(u, v).
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Q

R

Fig. 5.2. A translate of a conic

Example 5.2 For the conic Q defined below we will determine the translate
through (3, −2)

Q(x, y) = 2x2 + 3y2 − 12x + 12y + 24.

Substituting x = X +3, y = Y −2 we find after a certain amount of calculation
that the translate is

R(X, Y ) = 2X2 + 3Y 2 − 6.

Lemma 5.1 A point (u, v) is a centre for a conic Q(x, y) if and only if the
origin (0, 0) is a centre for the translated conic

R(X, Y ) = Q(X + u, Y + v).

Proof The condition for (u, v) to be a centre for Q is that we have the iden-
tity (5.1). Replacing x , y by X + u, Y + v we obtain the following identity,
expressing the fact that (0, 0) is a centre for R

R(X, Y ) = Q(X + u, Y + v) = Q(−X + u, −Y + v) = R(−X, −Y ).

That reduces our problem to that of finding a practical criterion for the ori-
gin to be a centre for the general conic

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Lemma 5.2 The origin is a centre for a general conic (�) if and only if the
coefficients of the linear terms x, y are both zero.

Proof The origin is a centre of Q if and only if the following conics coincide.
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Since at least one of a, h, b is non-zero, that happens if and only if f = 0,
g = 0, i.e. the coefficients of the linear terms x , y are zero{

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c
Q(−x, −y) = ax2 + 2hxy + by2 − 2gx − 2 f y + c.

We can now put the bits together to obtain a practical method for finding all
the centres of any given conic.

Lemma 5.3 The centres (u, v) of a general conic (�) are the solutions of the
linear equations

au + hv + g = 0, hu + bv + f = 0. (5.2)

Proof According to Lemma 5.1 the centres of a conic Q(x, y) are those points
(u, v) for which the origin is a centre of Q(x + u, y + v). And by Lemma 5.2
these are the points (u, v) for which the coefficients of the linear terms in
Q(x + u, y + v) are zero. The coefficients are found by replacing x , y by
x + u, y + v in Q(x, y) and then collecting all terms in x , and all terms in
y. We leave the reader to verify that the coefficients of x , y are respectively
2(au + hv + g), 2(hu + bv + f ).

There is another way of stating this result which is perhaps easier to remem-
ber in practice. Write Qx , Qy for the partial derivatives of Q with respect to
the variables x , y. The reader will verify that

Qx (x, y) = 2(ax + hy + g), Qy(x, y) = 2(hx + by + f ).

Thus the centres of a conic Q are the solutions of the linear equations

Qx(x, y) = 0, Qy(x, y) = 0. (5.3)

Example 5.3 For the standard parabola Q(x, y) = y2 − 4ax with a > 0
centres are the solutions of Qx = −4a = 0, Qy = 2y = 0. These equations
are inconsistent, so standard parabolas have no centre.

The analogy with the circle is by no means perfect. The next example shows
how the general concept of a ‘centre’ can differ from the familiar one for a
circle.

Example 5.4 Consider conics of the form Q = ax2 + by2 + c. Centres are
given by Qx = 2ax = 0, Qy = 2by = 0. Provided a, b are both non-zero
the origin is the only centre, lying in the zero set if and only if c = 0. In
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Fig. 5.3. Auxiliary circles of ellipse

particular, the origin is the unique centre of any standard ellipse or hyperbola.
When a = 0 there is a line of centres y = 0; and likewise when b = 0 is zero
there is a line of centres x = 0. Moreover, all these cases are independent of
whether the zero set of Q is empty.

Two conics Q, Q′ are concentric when they have a common unique centre.
In the case of two circles that agrees with the definition given in Chapter 3.
Here is a situation giving rise to concentric conics which are not necessarily
circles.

Example 5.5 The two vertices of a standard ellipse Q on a given axis are
necessarily equidistant from the centre. The two circles concentric with a stan-
dard ellipse and passing through two of the vertices are the auxiliary circles
associated to Q: the minor auxiliary circle is that of smaller radius, and the
major auxiliary circle is that of larger radius. Likewise, the two vertices on
the transverse axis of a standard hyperbola are equidistant from the centre, and
the circle through them concentric with the hyperbola is its auxiliary
circle.

Exercises

5.2.1 Determine the translate of the conic Q below under the vector W =
(−1, 1)

Q = 17x2 − 12xy + 8y2 + 46x − 28y + 17.
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5.2.2 In each of the following cases decide whether the given conic has a
centre, and if so find all the centres:

(i) 25x2 + 9y2 − 72y − 81 = 0,

(ii) 5x2 + 6xy + 5y2 − 4x + 4y − 4 = 0,

(iii) x2 − 4xy + 4y2 + 10x − 8y + 13 = 0.

5.2.3 In each of the following cases decide whether the given conic has a
centre, and if so find all the centres:

(i) x2 + xy − 2y2 + x − y = 0,
(ii) x2 − 4xy + 3y2 + 2x = 0,
(iii) x2 − 2xy + y2 + 2x − 4y + 3 = 0.

5.2.4 In each of the following cases show that given conic is central for all
t , and that the centres are collinear:

(i) 2y(x − 1) + 2t (x − y),
(ii) t (x2 + y2) − (x − 1)2,
(iii) x2 + t (t + 1)y2 + 2 − 2t xy + 2x . (t �= 0).

5.2.5 Let P be the intersection of two distinct lines L , M . Show that P is
the unique centre of the real line-pair Q = L M .

5.2.6 Let N be the parallel bisector of two distinct parallel lines L , M . Show
that N is a line of centres for the real parallel line-pair Q = L M .

5.3 Geometry of Centres

Although Lemma 5.3 is presented as a practical technique for finding centres,
it also yields essential geometric information, summarized by the following
result.

Theorem 5.4 The general conic Q defined by (�) has a unique centre, a line
of centres, or no centre. There is a unique centre if and only if δ �= 0. And if
there is a line of centres then � = 0.

Proof By Lemma 5.3 the centres of Q are the solutions of the linear system of
equations

ax + hy + g = 0, hx + by + f = 0. (5.4)

By linear algebra, there is a unique solution, a line of solutions, or no solu-
tion: moreover, there is a unique solution if and only if the determinant of the
2 × 2 matrix of coefficients is non-zero, i.e. δ = ab − h2 �= 0. If there is a
line of centres, the vectors (a, h, g), (h, b, f ) are linearly dependent. Thus the
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first two rows of the matrix (4.1) are linearly dependent, and its determinant
� = 0.

Example 5.6 We have already observed that standard parabolas have no cen-
tres. In fact that is true of general parabolas. By definition, a parabola is a conic
Q for which δ = 0 and � �= 0. The fact that δ = 0 means that Q has either a
line of centres, or no centre. However, in the former case Theorem 5.4 ensures
that � = 0, a contradiction. Thus Q has no centres.

In a given example the equations (5.2) can be solved ad hoc. However, there
is value in having general formulas. To this end we introduce a useful notation.
Write A, B, C , . . . for the cofactors of a, b, c, . . . in the matrix (4.1) defining
the discriminant �. Thus{

A = bc − f 2, B = ca − g2, C = ab − h2

F = gh − a f, G = h f − bg, H = f g − ch.
(5.5)

Suppose now that there is a unique centre. Then solving the equations (5.2)
explicitly, for instance via Cramer’s Rule, we find that the coordinates of the
centre are

u = G

C
, v = F

C
. (5.6)

Here is a useful payoff. Suppose we have a conic Q with a unique centre.
When we translate the centre to the origin, to obtain a translated conic R, the
quadratic terms do not change, and the linear terms will be absent, so it is
only the constant term that requires calculation. The next result determines the
constant term explicitly in terms of the invariants for Q. That means that R can
be calculated without knowing the coordinates of the centre.

Lemma 5.5 Assume the general conic Q has a unique centre (u, v). Then the
constant term in the translated conic below is �/δ

R(X, Y ) = Q(X + u, Y + v).

Proof The constant term in R(X, Y ) is obtained by setting X = 0, Y = 0
giving Q(u, v). Now Q can be written

Q(x, y) = x(ax + hy + g) + y(hx + by + f ) + (gx + f y + c). (5.7)

Since u, v satisfy the equations (5.2) we obtain the following equalities, the
second using the formulas for the coordinates of the centre, and the third on
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expanding the determinant of the matrix (4.1) by its last row or column

Q(u, v) = gu + f v + c = gG + f F + cC

C
= �

δ
.

Example 5.7 The conic Q defined below has a non-zero delta invariant, hence
a unique centre. We will not write out the coordinates of the centre, since they
are not relevant to the example

Q(x, y) = x2 − 2xy + 5y2 + 2x − 10y + 1.

The matrix of Q has two rows which are scalar multiples of each other, so
� = 0. It follows immediately that the conic obtained by translating the centre
to the origin is

R(X, Y ) = X2 − 2XY + 5Y 2.

Exercise

5.3.1 In each of the following cases show that the conic Q has a unique
centre. Without finding the centre, determine the conic obtained by
translating the centre to the origin:

(i) Q = 2x2 − 3xy − 2y2 + 2x + 11y − 13,
(ii) Q = 5x2 + 6xy + 5y2 − 4x + 4y − 4,
(iii) Q = x2 − 4xy + 3y2 + 2x .

5.4 Singular Points

An exceptional situation which may arise for a conic Q is that one of its points
is a centre. That gives rise to the following definition. A singular point of a
conic Q is a centre in its zero set: and Q is singular when it has at least one
singular point. By (5.3) the condition for Q to be singular is that there exists a
point (x, y) satisfying the simultaneous equations

Q(x, y) = 0, Qx(x, y) = 0, Qy(x, y) = 0. (5.8)

Note first that any conic whose zero set comprises a single point W is sin-
gular, since according to the definitions W is automatically a centre. Here is a
rather different example.
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Example 5.8 The conic Q(x, y) = x2 − 4y2 − 2x + 8y − 3 is singular. The
reader is left to check that Q has a unique centre, namely the point (1, 1), and
that the centre lies on Q. The geometry underlying this example is very simple.
The conic Q is reducible, since we can write Q = L M with L = x − 2y + 1,
M = x + 2y − 3, and the centre is the unique intersection of L , M .

The next result shows that this example is typical, in the following precise
sense.

Lemma 5.6 Let Q be a singular conic whose zero set has more than one
point. Then Q is reducible, and its singular points are the intersections of its
components.

Proof Since Q is singular there is a centre W lying in its zero set. And since
the zero set of Q comprises more than one point, there is at least one point Z
distinct from W in the zero set. As W is a centre, the central reflexion Z ′ of Z
in W is also in the zero set of Q. It follows that the line L through Z , Z ′, W
meets Q in three distinct points, so by the Component Lemma is a component
of Q. Let L ′ be the other component, and write L = ax + by + c, L ′ =
a′x + b′y + c′. By (5.8) singular points of Q have to satisfy the simultaneous
equations

L L ′ = 0, a′L + aL ′ = 0, b′L + bL ′ = 0.

The first relation tells us that L = 0 or L ′ = 0. And in either case the other
two relations show that both L , L ′ must vanish, so the singular points are the
intersections of the components L , L ′.

To decide whether a conic Q is singular it appears that we must first find
its centres, and then check whether at least one of them lies on Q. However, in
most cases we can avoid this lengthy computation, using the following fact.

Lemma 5.7 Suppose the conic Q has a unique centre. Then the centre is
singular on Q if and only if � = 0.

Proof Let (u, v) be the centre. It is singular on Q if and only if it lies on Q.
And that is the case if and only if (0, 0) lies on the translated conic

R(X, Y ) = Q(X + u, Y + v).

However (0, 0) lies on R if and only if the constant term in R is zero, which
by Lemma 5.5 is equivalent to � = 0.
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Example 5.9 The conic Q(x, y) = x2 − 2xy + 5y2 + 2x − 10y + 1 has delta
invariant δ = 4, and is non-singular since � = −36. We could have achieved
the same result by checking that (0, 1) is the only centre, and observing that it
does not lie on Q: however, it is easier to calculate the invariants.

Although singular points are exceptional features of a conic, they represent
the beginning of a profitable train of geometric thought. The natural general-
izations of conics are the algebraic curves studied at length in EGAC. And for
such curves the concept of a ‘singular point’ turns out to be of fundamental
importance in understanding their geometry.



6

Degenerate Conics

The conics of greatest geometric significance are the non-degenerate ones, hav-
ing a non-zero discriminant. Although the geometry of degenerate conics is
uninteresting, they are not without significance as transitional types in families
of conics. That is not the only justification for devoting space to degenerate
conics. There are useful facts and techniques associated to them which are
worth setting out properly. Section 6.1 introduces a particularly simple class
of degenerate conics called binary quadratics, just one small step away from
the familiar quadratics of school mathematics, and spells out the mechanics of
handling them. That sets the scene for a more careful study of reducible conics
in Section 6.2. The key facts are that reducible conics are automatically degen-
erate, and come close to being characterized by the sign of their delta invariant:
moreover, there is an entirely practical procedure for finding the components
of a reducible conic. By way of illustration we introduce pencils of conics,
and ask how to find degenerate conics within the pencil, a question directly
relevant to the focal constructions of Chapter 8. And in the final section we
continue the theme by discussing the perpendicular bisectors of a real line-
pair, the simplest illustration of a central idea of the subject, namely the axes of
a conic.

6.1 Binary Quadratics

In this section we look at a class of degenerate conics, including both reducible
and irreducible types. A binary quadratic is a conic of the following form

Q(x, y) = ax2 + 2hxy + by2. (6.1)

Binary quadratics behave very like the quadratics in one variable familiar
from school mathematics. They are clearly degenerate: the matrix of a binary
quadratic has a row (and column) of zeros, so has a zero determinant. You can

54



6.1 Binary Quadratics 55

view a binary quadratic as a conic for which the origin is a singular point. The
point of the next example is that in fact all singular conics are degenerate: the
argument uses a consequence of the Invariance Theorem in Chapter 14, namely
that the relation � = 0 is invariant under translations.

Example 6.1 Any singular conic Q is degenerate. Since Q is singular it has
a centre W lying on Q. Translating W to the origin we obtain a translate R
of Q for which the origin is a singular point. Thus R is a binary quadratic,
hence degenerate. Since the relation � = 0 is invariant under translations we
conclude that Q likewise is degenerate.

The point of the next result is that the sign of the delta invariant determines
whether a binary quadratic is reducible or irreducible.

Lemma 6.1 Let Q be a binary quadratic defined by (6.1). When δ < 0 it is a
real line-pair with vertex the origin; when δ = 0 it is a repeated line through
the origin; and when δ > 0 it is irreducible.

Proof Assume first that one of a, b is non-zero. Then we have the identities

aQ(x, y) = (ax + hy)2 + δy2, bQ(x, y) = δx2 + (hx + by)2.

When δ < 0 these identities show that Q is a difference of squares, hence
a pair of lines through the origin. When δ = 0 they express Q explicitly as
a repeated line through the origin. And when δ > 0 they show that the zero
set of Q is the origin, so Q is irreducible. (As we pointed out previously, the
zero set of a reducible conic is infinite.) It remains to consider the case when
a = b = 0: but then δ < 0, and Q evidently reduces to two distinct lines
through the origin.

Example 6.2 The binary quadratic Q = x2 + 2hxy + y2 with h > 0 has delta
invariant δ = 1 − h2. For h > 1 we have δ < 0 and Q is a real line-pair. For
h = 1 it is a repeated line (x + y)2. And for 0 < h < 1 we have δ > 0 so
the origin is the only point in the zero set. An interesting consequence is that
distinct values h1, h2 of h in the range 0 < h < 1 give rise to different conics
having the same zero set. Unlike the virtual circles of Example 3.2 the zero
sets here are non-empty.

Given that the binary quadratic (6.1) has a negative delta invariant we can
factorize it on the basis of the following observation. When a = 0 or b = 0 the
factorization is clear, so we can assume a, b �= 0. Write λ, µ for the roots of
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the quadratic equation az2 +2hz +b = 0. Then, writing z = x/y, and clearing
denominators, we see that

Q(x, y) = a(x − λy)(x − µy).

Example 6.3 The binary quadratic Q = 77x2 + 78xy − 27y2 is reducible as
δ < 0: indeed Q = (11x − 3y)(7x + 9y).

6.2 Reducible Conics

In this section we will show that reducible conics are automatically degenerate,
and that within that class real line-pairs are characterized by the sign of their
delta invariant.

Lemma 6.2 Any reducible conic Q is degenerate. Moreover, δ ≤ 0 with equal-
ity if and only if Q is a real parallel line-pair.

Proof Write L = ax + by + c, L ′ = a′x + b′y + c′ for the components. The
matrix A of the conic Q = L L ′ is easily checked to be

2A =

 2aa′ ab′ + a′b ac′ + a′c

ab′ + a′b 2bb′ bc′ + b′c
ac′ + a′c bc′ + b′c 2cc′


 .

Write v = (a, b, c), v′ = (a′, b′, c′). The rows of the matrix are av + a′v′,
bv + b′v′, cv + c′v′ so the row space is spanned by just the two vectors v,
v′. It follows from linear algebra that the determinant � is zero. A calculation
shows that δ = −(ab′ − a′b)2 ≤ 0: thus δ = 0 if and only if ab′ − a′b = 0,
which is equivalent to saying that the lines L , L ′ have the same direction.

Throughout this text we will tacitly use the logical converse of the first
statement in Lemma 6.2, namely that non-degenerate conics are irreducible.
That has a useful consequence. According to the Component Lemma any ir-
reducible conic Q intersects a line in at most two points, so non-degenerate
conics have the same property. In particular, parabolas, real ellipses, and hy-
perbolas all meet lines in at most two points. Here is a partial converse of the
last result. It uses the fact that any translate of a reducible conic is likewise
reducible. (Exercise 6.2.1.)

Lemma 6.3 Any degenerate conic Q with δ < 0 is reducible.
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Table 6.1. Degenerate classes

name δ �

real line-pairs δ < 0 � = 0
parallel line-pairs δ = 0 � = 0
virtual line-pairs δ > 0 � = 0

Proof Since δ < 0 the conic Q has a unique centre. Translating the centre to
the origin we obtain a conic Q′ with the same quadratic part, but no terms in x ,
y. By Lemma 5.5 the constant term in Q′ is �/δ; since Q is degenerate � = 0,
so the constant term is likewise zero. Thus Q′ is a binary quadratic with δ < 0.
It follows from Lemma 6.1 that Q′ is reducible, and hence its translate Q is
likewise reducible.

The key consequence of these results is that real line-pairs are characterized
as conics for which δ < 0 and � = 0. On this basis it makes sense to emulate
the non-degenerate case by splitting the degenerate conics into the three classes
defined by Table 6.1. It will be convenient to subdivide the ‘parallel line-pair’
class into three subclasses, namely the real parallel line-pairs, the repeated
lines, and the virtual parallel line-pairs, characterized by empty zero sets.

It is useful to know in practice whether a given conic Q is reducible, and if
so to have a procedure for determining its components. The above generalities
suggest how to proceed. A necessary condition for Q to be reducible is that
� = 0. And in that case, Q is reducible when δ < 0, and irreducible when
δ > 0. Of course when δ = 0 the question is undecided. For instance both
the conics Q = x2 ± 1 are degenerate with δ = 0: however, in the ‘−’ case
Q is a real line-pair, whilst in the ‘+’ case Q is irreducible, since its zero set
is empty. Even if we know in principle that Q is reducible, we are still faced
with the practical question of determining its components. Here is a practical
approach. Suppose Q is degenerate, with δ ≤ 0. Were it reducible, it could be
written in the form

Q(x, y) = (px + qy + α)(r x + sy + β). (6.2)

Observe that the quadratic part of Q would then factorize as the product of
the lines px + qy, r x + sy. That suggests a practical approach: find the factors
px + qy, r x + sy of the quadratic terms: then determine whether there exist
constants α, β for which (6.3) holds, by equating the coefficients of x , y and
the constant term. That produces two linear equations in α, β, plus the relation
αβ = c. And Q is reducible if and only if all three equations have a solution.
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Example 6.4 By way of illustration consider the conic Q defined by

Q(x, y) = 3x2 + 2xy − y2 − 4x − 4y − 4.

The quadratic part is 3x2 + 2xy − y2, with δ = −4 < 0, so reducible: indeed,
it factorizes as (3x + y)(x − y). To see whether Q reduces we seek constants
α, β for which

Q(x, y) = (3x + y + α)(x − y + β).

Equating coefficients of x , y and the constant term we get α + 3β = −4,
−α + β = −4, αβ = −4. The first two equations give α = 2, β = −2, which
also satisfy the third relation. Thus Q is reducible, indeed

Q(x, y) = (3x + y + 2)(x − y − 2).

Example 6.5 The trace invariant τ of a general conic Q has received virtually
no mention since its introduction in Section 4.3. Recall that τ = a + b, where
a, b are the coefficients of x2, y2 in Q. In the case when Q is reducible, the
geometric meaning of the relation τ = 0 is easily ascertained. Any such conic
Q can be written in the following form

Q(x, y) = (px + qy + α)(r x + sy + β). (6.3)

The coefficients of x2, y2 are a = pr , b = qs. Thus τ = a + b = 0 is equi-
valent to the following relation, which holds if and only if the lines are perpen-
dicular

0 = pr + qs = (p, q) • (r, s).

Exercises

6.2.1 Show that any translate of a reducible conic is itself reducible.
6.2.2 Show that any point circle is in the class of virtual line-pairs.
6.2.3 Let L be a line, and k a constant. Show that the conic Q = L2 + k

is a parallel line-pair, indeed that it is a real parallel line-pair when
k < 0, a repeated line when k = 0, and a virtual parallel line-pair
when k > 0.

6.2.4 In each of the following cases decide whether the given conic is re-
ducible, and if so find the components:

(i) 2x2 + xy − y2 + x − 2y − 1 = 0,
(ii) x2 − y2 + 2

√
2y − 2 = 0,

(iii) 10xy + 8x − 15y − 12 = 0.
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6.2.5 In each of the following cases decide whether the given conic is re-
ducible, and if so find the components:

(i) 2x2 − xy + 5x − 2y + 2 = 0,
(ii) 3x2 + 5xy − 2y2 − 8x + 5y − 3 = 0,
(iii) x2 − xy + y2 − x − y + 1 = 0.

6.2.6 In each of the following cases find the values of the constant λ for
which the conic is reducible:

(i) x2 + xy + 3x + λy = 0,
(ii) 2x2 + 9xy + 4y2 − λx + 2y = 0,
(iii) λxy + 5x + 3y + 2 = 0.

6.3 Pencils of Conics

The motivation for devoting this chapter to degenerate conics was that they
occur naturally as transitional types in families of general conics. It is time to
amplify this statement. We have already seen how pencils of lines and circles
provide natural geometric families. The same is true of general conics. By the
pencil of conics spanned by two distinct conics Q, R we mean the set of all
conics of the form λQ + µR, where λ, µ are constants, not both zero. Here
again we have the same key intersection property that we noted for lines and
circles, namely that any two distinct elements Q′, R′ in the pencil have the
same intersection as Q, R: the proof is identical to the line case. There may be
an exceptional ratio λ : µ for which λQ + µR fails to be a conic; but for all
other ratios it will be a conic. A natural question to ask is how the type of the
conic λQ + µR depends on the ratio λ : µ. We will content ourselves with an
example.

Example 6.6 We will investigate the conic types which appear in the pencil
of conics U = λQ + µR, where Q, R are the conics defined by the following
formulas

Q = 2(y2 + 2xy + x + y + 1), R = 2(x2 − x − y − 1).

The reader will readily verify that the delta invariant and discriminant of U are
given by

δ = 4λ(µ − λ), � = −2(λ − µ)2(3λ + µ).

The conic U is degenerate if and only if � = 0, i.e. µ = λ or µ = −3λ.
Think of these conditions defining lines through the origin in the (λ, µ)-plane
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µ = −3λ
µ = λ

δ < 0
λ

δ>0

δ > 0

δ < 0

µ

Fig. 6.1. Conic types in a pencil

(Figure 6.1.). The line µ = λ corresponds to the repeated line S = (x + y)2,
whilst the line µ = −3λ corresponds to the conic of Example 6.4, namely the
real line-pair

T = 3x2 + 2xy − y2 − 4x − 4y − 4 = −(3x + y + 2)(x − y − 2).

Thus our pencil contains two degenerate conics, a repeated line S, and a real
line-pair T . Let us pursue the analysis a little further. The lines in the (λ, µ)-
plane split it into two cones, any point of which corresponds to a non-
degenerate conic in the pencil. The delta invariant gives further information.
The conic is a parabola if and only if δ = 0, i.e. λ = 0 or µ = λ. The line
λ = 0 is the µ-axis, and corresponds to our original conic R, which is indeed a
parabola. And the line µ = λ, as we just seen, corresponds to the repeated line
S. The lines µ = λ, µ = −3λ determine two cones, one containing the λ-axis,
and the other the µ-axis. In the former cone we have δ < 0, so the conic U is
a hyperbola. And in the latter, except on the µ-axis itself, we have δ > 0 so U
is an ellipse. (In fact, as we will see below, it is a real ellipse.)

In the above example the degenerate conics represent transitional types be-
tween ellipses and hyperbolas. The fact that the pencil in this example contains
a repeated line is not without significance. In fact it is exceptional for a pencil
of conics to contain a repeated line: normally, the degenerate conics in a pencil
are line-pairs. In Chapter 8 we will see that the process of finding repeated
lines in a pencil of conics is a key step in getting to grips with the geometry of
a conic.
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Example 6.7 It is worth pursuing the previous example one step further. The
intersection property of pencils tells us that the conics Q, R have the same
intersections as the degenerate conics S, T , and these are readily verified to
be the points (1, −1), (−1, 1). In particular, any conic in the pencil passes
through these two points, so has a non-empty zero set. That gives us useful
extra information, namely that when U is an ellipse it is actually a real ellipse.

What is interesting about this example is that it suggests a strategy for find-
ing the intersections of two quite general conics Q, R by first finding the de-
generate conics in the resulting pencil λQ + µR. That observation turns out to
have useful applications within algebra.

Exercise

6.3.1 Consider the pencil of conics λQ + µR where Q, R are the conics
defined by the following formulas

Q = 2(xy − 2x + y), R = 2(xy − 3x + 2y).

Show that the pencil contains three degenerate conics, all of which
are real line-pairs. In each of the three cases find the components of
the line-pair. Use your results to find the intersections of the conics
Q, R. What type of conic is λQ + µR when it is non-degenerate?

6.4 Perpendicular Bisectors

In the next chapter we will introduce the general idea of an ‘axis’ for a conic Q.
The purpose of this section is to provide a foretaste of this general concept for
the special case when Q be a real line-pair. Suppose Q has components L , M ,
and vertex P . A bisector of Q is a line B through P whose intersection Z with
any line perpendicular to B is the midpoint of its intersections with L , M . The
mental picture is illustrated in Figure 6.2. The figure suggests that L , M will
have two bisectors, and that they will be perpendicular. The function of the
next result is to formalize these intuitions, and relate them to the more usual
formulation in terms of angles.

Lemma 6.4 Let L, M be distinct lines in canonical form through a point P.
Their bisectors are the lines L ± M, each of which ‘bisects’ an angle between
L, M.

Proof Let the canonical forms be L(Z) = U • Z + c, M(Z) = V • Z + d,
where U , V are unit vectors. By Example 1.7 any line through P has the form
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P

L

B
Z

M

Fig. 6.2. Bisectors of two lines

B = αL + βM for some constants α, β. We will determine the condition on
α, β for B to be a bisector. Let Z �= P be a point on B, so that

0 = B(Z) = αL(Z) + βM(Z). (6.4)

The line perpendicular to B through Z has direction W = αU + βV , so
is parametrized as Z + tW . The condition for Z to be the midpoint of the
intersections with L , M is that there is a non-zero constant t for which
L(Z + tW ) = 0, M(Z − tW ) = 0. Using the relations U •U = 1, V • V = 1
that gives

{
0 = U • (Z + tW ) + c = L(Z) + t{α + β(U • V )}
0 = V • (Z − tW ) + d = M(Z) − t{α(U • V ) + β}.

Substituting for L(Z), M(Z) in (6.4) we obtain α2−β2 = 0, yielding β = ±α.
It follows that there are just two bisectors, namely the lines L − M , L + M
with perpendicular directions U − V , U + V . We claim that the angles α

between L , L−M coincide with the angles β between M , L−M . We have only
to observe that the angles are determined by the following relations, whose
right-hand sides are equal

± cos α = U • (U + V )

|U + V | , ± cos β = V • (U + V )

|U + V | .

In exactly the same way we deduce that the angles between L , L + M coincide
with the angles between M , L + M .

In view of this result we refer to the lines L − M , L + M as the perpen-
dicular bisectors of L , M .
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Fig. 6.3. Cones associated to a line-pair

Example 6.8 We will find the perpendicular bisectors of the lines 3x + 2y +
2 = 0, 18x − y − 1 = 0. They have canonical forms

L(x, y) = 3x + 2y + 2√
13

, M(x, y) = 18x − y − 1

5
√

13
.

It is now a matter of arithmetic to check that the perpendicular bisectors L+M ,
L − M are the lines 11x + 3y + 3 = 0, 3x − 11y − 11 = 0.

There is a generality here worthy of comment, since it will be relevant to
the geometry of hyperbolas in Chapter 12. The mental picture for a line-pair
Q = L M in Figure 6.3 is worth commenting on. For specific choices of lin-
ear functions L , M the product Q is a quadratic function, whose sign plays a
role. Any linear function divides the plane into two half-planes, one where the
function is positive, and the other where it is negative. Thus L , M divides the
plane into four half-cones, corresponding to the four possible sign pairs ++,
+−, −+, −−.

There are therefore two cones, with Q positive on one and negative on the
other. When we think of L , M as lines, and Q as a line-pair, all that is important
is that Q takes opposite signs in the two cones. The relevance of these remarks
to bisectors is that one bisector of L , M lies in one cone, whilst the other lies
in the other cone. We have only to observe that at points (x, y) on L − M we
have L M(x, y) = L2(x, y), and at points on L + M we have L M(x, y) =
−L2(x, y): thus L M takes different signs on the two cones.

Exercises

6.4.1 In each of the following cases find the bisectors of the given pair of
lines:
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(i) x + 2y + 3 = 0, 2x − y + 3 = 0,
(ii) 4x + 3y + 10 = 0, 12x − 5y + 2 = 0,
(iii) x + y + 2 = 0, x − 7y − 2 = 0,
(iv) 6x + 8y + 13 = 0, 2y + 1 = 0.

6.4.2 Show that the points (1, 1), (2, 3), (0, 7), (−2, 4) lie in the four sec-
tors of the plane determined by the linear functions 3x + 2y − 6 and
2x − y + 2.
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Axes and Asymptotes

A general philosophy of the subject is that it is fruitful to understand how
a conic Q intersects lines. It is not just the intersections of Q with a single
line which are significant, but its intersections with pencils of lines. In this
chapter we pursue this philosophy in the special case of a parallel pencil of
lines. Any line in the pencil intersecting Q twice determines a chord with a
unique midpoint. Section 7.1 establishes that the midpoints lie on a line, at
least provided the delta invariant is non-zero. In the next section we use this
‘midpoint locus’ to introduce axes of symmetry, a significant visual feature
of a conic. For instance ellipses and hyperbolas have two perpendicular axes
through their centre, whilst a parabola has a single axis. Moreover, for line-
pairs the axes are the perpendicular bisectors of the component lines, familiar
from Chapter 6. The final section illustrates an exceptional situation, namely
parallel pencils whose general line meets Q in a single point: that leads us to
the concept of ‘asymptotic directions’ for a conic, and the associated classical
idea of an ‘asymptote’.

7.1 Midpoint Loci

Consider the intersection of a conic Q with the parallel pencil of lines in a gen-
eral direction (X, Y ). This section revolves around the fact that the midpoints
of the resulting family of parallel chords lie on a line, the ‘midpoint locus’ as-
sociated to the direction (X, Y ). For instance, when Q is a real circle, the locus
of midpoints is a diameter. Figure 7.1 illustrates a less familiar example, when
Q is an ellipse.

We have to be careful when formulating a definition, since the lines in the
pencil may not intersect Q: for instance, the zero set of Q may be empty. To
provide motivation, we write down a condition we expect to be satisfied on the
potential midpoints Z = (x, y). Consider the line L through Z in the direction

65
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(X, Y )

Q

Fig. 7.1. A midpoint locus for an ellipse

(X, Y ), parametrized as

x(t) = x + t X, y(t) = y + tY.

The point Z itself corresponds to the parameter t = 0. The idea is that for Z
to be a midpoint of a chord we expect two values t = t0, t = −t0 for which
the point with parameter t lies on Q. In Section 4.4 we showed that the inter-
sections of L with Q are determined by the roots of a quadratic equation

φ(t) = pt2 + qt + r = 0.

The condition for the roots to be equal and opposite is that their sum is zero,
i.e. q(X, Y ) = 0. We need to interpret this for a general conic

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Using the relations (4.3) for the coefficients p, q, r in the quadratic, we see
that the required condition is that

(ax + by + g)X + (hx + by + f )Y = 0. (7.1)

We are thinking of the direction (X, Y ) as fixed, and x , y as the variables,
so it is more illuminating to write this in the form

(aX + hY )x + (h X + bY )y + (gX + f Y ) = 0. (7.2)

The set of points (x, y) for which this relation holds is the midpoint locus for
the direction (X, Y ): it is unchanged when we replace (X, Y ) by a non-zero
scalar multiple. The key facts are highlighted by the following statement.

Lemma 7.1 The midpoint locus of Q associated to the direction (X, Y ) is
either a line, or empty, or the whole plane. Moreover, it contains every centre.
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When δ �= 0 the midpoint locus is a line (through the unique centre) for any
choice of direction (X, Y ).

Proof The first statement is immediate from the form of (7.2). By Lemma 5.3,
any centre (u, v) for Q satisfies the equations

au + hv + g = 0, hu + bv + f = 0.

Then by (7.1) the point (u, v) lies on the midpoint locus, for any choice of di-
rection. That establishes the second statement of the lemma. Suppose now that
δ �= 0. The midpoint locus associated to a direction (X, Y ) is a line, provided
one of the coefficients of x , y in (7.2) is non-zero: that fails only when both
coefficients vanish

a X + hY = 0, h X + bY = 0.

Since δ = ab − h2 �= 0 these linear equations in X , Y only have the trivial
solution X = Y = 0, a contradiction. Thus at least one of the coefficients of x ,
y is non-zero, and the midpoint locus is a line.

Example 7.1 The real ellipse x2 + 2y2 =1 has the origin as its unique centre.
The midpoint locus associated to the direction (X, Y ) is the diameter X x +
2Y y = 0. For instance, the locus associated to the direction (1, 1) is the line
x + 2y = 0.

Example 7.2 For a standard parabola y2 = 4ax with a > 0 we have δ = 0, so
there is no guarantee that the midpoint locus will be a line for every direction
(X, Y ). The midpoint locus has equation 2aX − yY = 0, so provided Y �= 0 it
is a horizontal line. However for the direction (1, 0) of the x-axis the locus is
defined by 2a = 0, so is empty.

It is worth remarking that our conclusions depend crucially on the fact that
we have considered the intersections of a conic Q with a parallel pencil of
lines. The next example illustrates what can happen when we take a general
pencil.

Example 7.3 Let Q be the standard parabola y2 = 4ax . Consider the inter-
sections of Q with the pencil of lines through the origin. Only one line in the
pencil meets Q just once, namely y = 0. Any other line has the form x = t y
for some constant t , and meets Q at the origin and the point (4at2, 4at). The
midpoint of the chord through these points is (2at2, 2at) so lies on a second
parabola y2 = 2ax . Thus the locus of midpoints fails to be a line.
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Exercises

7.1.1 In each of the following cases find the midpoint locus associated to
the given conic Q, and the given direction Z = (X, Y ):

(i) Q = ax2 + by2, Z = (1, 1),
(ii) Q = xy − 1, Z = (X, Y ),
(iii) Q = 5x2 − 2xy + 4x , Z = (1, −1).

7.1.2 Show that there is a unique direction (X, Y ) for which the midpoint
locus of the real parallel lines y2 = 1 fails to be a line. Verify that for
any direction it contains all the centres.

7.2 Axes

The standard ellipses and hyperbolas of Section 4.1 had evident symmetry in
both coordinate axes: likewise, the standard parabolas had evident symmetry
in the x-axis. Our objective in this section is to introduce ‘axes of symmetry’
for general conics. It turns out that any conic is symmetric in at least one line,
possibly more: for instance, a circle is symmetric about every line through its
centre. Such lines are fundamental to the geometry of the conic, and we need
practical techniques for finding them. A line L is an axis of a conic Q when it
is the midpoint locus associated to a perpendicular direction; and points where
an axis L meets Q are vertices of Q. Observe that an axis L is necessarily a
line of symmetry, in the sense that the line through any point P on the conic
perpendicular to L meets Q again at a point P ′ equidistant from L .

Example 7.4 Any line through the centre of the real circle x2 + y2 = r2 with
r > 0 is an axis. The relation (7.2) tells us that the midpoint locus associated
to any direction (X, Y ) is the line X x + Y y = 0 through the centre. The claim
follows from the observation that any line through the centre has this form, so
is an axis. It follows that every point on the circle is a vertex.

Our immediate objective is to find axes (and hence vertices) in practice. As
always, we consider a general conic

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Lemma 7.2 The midpoint locus associated to a non-zero vector (X, Y ) is an
axis for the conic (�) if and only if there exists a non-zero constant λ for which

a X + hY = λX, h X + bY = λY. (7.3)
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Proof The condition for the midpoint locus to be an axis is that some line
X x + Y y + Z perpendicular to the direction (X, Y ) coincides with the associ-
ated midpoint locus (7.2). That is equivalent to saying that there is a non-zero
constant λ for which

aX + hY = λX, h X + bY = λY, gX + f Y = λZ .

In particular (7.3) holds for some λ �= 0. Conversely, if (7.3) holds for some
non-zero constant λ then we can define Z by gX + f Y = λZ , and conclude
that the line X x + Y y + Z coincides with the midpoint locus, so is an axis.

Let us look more closely at the relations (7.3). It will be helpful to write
them as a single matrix relation(

a h
h b

) (
X
Y

)
= λ

(
X
Y

)
. (7.4)

Any real number λ for which this holds for some non-zero vector (X, Y )

is a eigenvalue of the quadratic function (�). We stress that λ is associated to
(�), not to the conic it defines: the result of multiplying Q by a constant k is
to multiply λ by k. Given an eigenvalue λ, any vector (X, Y ) for which (7.4)
holds is a eigenvector associated to that eigenvalue. Note that if (X, Y ) is a
eigenvector associated to λ then any scalar multiple is also a eigenvector. To
find the eigenvalues, write (7.4) in the form(

a − λ h
h b − λ

) (
X
Y

)
=

(
0
0

)
. (7.5)

Then λ is an eigenvalue if and only if this holds for some non-zero vector
(X, Y ). By linear algebra, that is equivalent to∣∣∣∣a − λ h

h b − λ

∣∣∣∣ = 0. (7.6)

Expansion of the determinant yields the following quadratic in λ, known as the
the characteristic equation, whose roots are the required eigenvalues

λ2 − (a + b)λ + (ab − h2) = 0. (7.7)

The characteristic equation always has at least one real root, since its dis-
criminant is (a − b)2 + 4h2 ≥ 0. It has a repeated root if and only a = b and
h = 0, so precisely when (�) is a circle. With that sole exception, there are
always two distinct eigenvalues, with product the delta invariant δ = ab − h2.
For an ellipse the eigenvalues have the same sign, whilst for the hyperbola
they have different signs. Note that there is a zero eigenvalue if and only if the
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constant term δ = 0: however, zero cannot be a repeated root as the relations
a = b, h = 0, δ = 0 hold if and only if a = b = h = 0. Although the
magnitude and sign of an eigenvalue may well change on multiplying (�) by
a constant, it does make sense to refer to the eigenvalue of smaller or larger
absolute value.

It follows from the above that a direction (X, Y ) perpendicular to an axis
is necessarily an eigenvector associated to non-zero eigenvalues λ. Inciden-
tally, since at least one eigenvalue is non-zero we have established that every
conic has at least one axis. In the case when δ �= 0, and (�) is not a circle,
there are two non-zero eigenvalues giving rise to two axis directions (X, Y ).
The corresponding axes are the lines X x + Y y + Z = 0 through the unique
centre.

Example 7.5 Consider any conic Q given by a formula of the form Q =
px2 + qy2 − 1, where p, q are distinct non-zero constants. Clearly, Q has
the origin as its unique centre. The characteristic equation is displayed below,
yielding eigenvalues λ = p, q

λ2 − (p + q)λ + pq = 0.

Associated eigenvectors are the directions (1, 0), (0, 1) of the x- and y-axes.
Morover the coordinate axes pass through the centre, so are the required axes
of Q. In particular the axes of the standard ellipses and hyperbolas are the
coordinate axes, consistent with the definitions given in Section 4.1.

Example 7.6 The reader will readily verify that the displayed conic Q is an
ellipse, with centre (−1, 1)

Q(x, y) = 17x2 − 12xy + 8y2 + 46x − 28y + 17.

The characteristic equation is λ2 − 25λ + 100 = 0 with roots λ = 5, λ = 20.
Corresponding eigenvectors are then given by(

12 −6
−6 3

) (
X
Y

)
=

(
0
0

)
,

(−3 −6
−6 −12

) (
X
Y

)
=

(
0
0

)
.

That yields respective eigenvectors (1, 2), (2, −1). The axes are the lines
through the centre in these directions, namely

2x − y + 3 = 0, x + 2y − 1 = 0.

It is no coincidence that the eigenvectors in the above examples are perpen-
dicular: that is a consequence of the following generality.
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Lemma 7.3 Any direction (X, Y ) perpendicular to an axis for (�) satisfies the
binary quadratic equation

h X2 + (b − a)XY − hY 2 = 0. (7.8)

Proof Another way of expressing the conditions (7.3) is to say that the vectors
(X, Y ), (aX + hY, h X + bY ) are linearly dependent. By linear algebra that
is equivalent to the vanishing of their determinans. And that is precisely (7.8).

We call (7.8) the direction quadratic for (�). The coefficients vanish when
a = b, h = 0, so if and only if there is a repeated eigenvalue. Otherwise, the
direction quadratic has a positive discriminant, so determines two directions
(X, Y ). Moreover, we can deduce from Example 6.5 that these directions are
perpendicular, since the sum of the coefficients of X2, Y 2 is zero. The direction
quadratic offers another way of finding axis directions.

Example 7.7 In the previous example the coefficients of the quadratic terms
were a = 17, b = 8, h = −6 so the direction quadratic is as follows, yielding
the same axis directions

0 = −3(2X2 + 3XY − 2Y 2) = −3(2X − Y )(X + 2Y ).

Example 7.8 For the standard parabola Q = y2 − 4ax with a > 0 the char-
acteristic equation is λ(λ − 1) = 0. Thus the eigenvalues are λ = 0, 1 with
respective eigenvectors the directions (1, 0), (0, 1) of the coordinate axes. In
Example 7.2 we saw that the midpoint locus for the y-axis direction is the line
y = 0, whilst that for the x-axis direction is empty. There is therefore just one
axis y = 0 corresponding to the non-zero eigenvalue.

Example 7.9 The geometric condition for a general conic (�) to have an axis
direction (X, Y ) parallel to a coordinate axis is that (7.8) should have a solution
with X = 0 or Y = 0. Clearly, that is equivalent to the algebraic condition
h = 0. The initial step in classifying conics in Chapter 15 will be to force the
algebraic condition h = 0 by applying a suitable ‘rotation’ of the conic about
the origin.

Exercises

7.2.1 In each of the following cases verify that the given conic is an ellipse,
and find its centre and axes:
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(i) x2 − xy + 2y2 = 0,
(ii) 5x2 − 24xy − 5y2 + 14x + 8y − 16 = 0,
(iii) 3x2 + 2xy + 3y2 + 14x + 20y − 183 = 0.

7.2.2 In each of the following cases find the centre and axes of the given
conic:

(i) x2 + xy + y2 − 2x + 2y − 6 = 0,
(ii) 3x2 + 2xy + 3y2 − 6x + 14y − 101 = 0,
(iii) 77x2 + 78xy − 27y2 + 70x − 30y + 29 = 0.

7.3 Bisectors as Axes

A special case of the axis construction arises when Q is a real line-pair, with
components L , L ′ and vertex P . In that case δ < 0, so, by the above, discussion
there are two perpendicular axes M , M ′. Clearly, these are the perpendicular
bisectors of Section 6.4. The simplest case is when L , L ′ are lines through the
origin, with joint equation

Q(x, y) = ax2 + 2hxy + by2.

Then, by the above, the joint equation of the bisectors is the following binary
quadratic; factorization yields the individual bisectors

B(x, y) = hx2 + (b − a)xy − hy2.

A potential advantage of this approach over the method described in Sec-
tion 6.4 is that starting from the joint equation of the lines, one proceeds di-
rectly to the joint equation of the bisectors. However, there is the potential
drawback of having to factorize the joint equation of the bisectors.

Example 7.10 The joint equation of the lines y = 2x , y = 3x through the
origin is 6x2 − 5xy + y2. By the above, the joint equation of the bisectors is
5(x2 + 2xy − y2). Factorizing, we see that the bisectors are the lines

x + (1 −
√

2)y = 0, x + (1 +
√

2)y = 0.

The procedure can be modified for line-pairs Q(x, y) whose centre is not
the origin. Find the centre (u, v): then the translation x = X + u, y = Y + v

gives a pair of lines R(X, Y ) through the origin. The joint equation R′(X, Y )

of its bisectors can then be read-off as above. Finally, translating back by X =
x − u, Y = y − v we obtain the joint equation Q′(x, y) of the bisectors for Q.
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Example 7.11 We leave the reader to verify that the conic Q below is a line-
pair with centre (−3, 1)

Q(x, y) = x2 − 5xy + 3y2 + 11x − 21y + 27.

The translation x = X −3, y = Y +1 taking the centre to the origin then yields
the parallel line-pair R(X, Y ) below. The joint equation of the perpendicular
bisectors is then a multiple of R′(X, Y )

R(X, Y ) = X2 − 5XY + 3Y 2, R′(X, Y ) = 5X2 − 4XY − 5Y 2.

Translating back to the centre of Q, by setting X = x + 3, Y = y − 1 we see
that its perpendicular bisectors have joint equation

Q′(x, y) = 5x2 − 4xy − 5y2 + 34x − 2y + 52.

Exercises

7.3.1 Use the method of Section 6.4 to find the bisectors of the lines y =
2x , y = 3x . Verify that your answer agrees with that obtained in
Example 7.10.

7.3.2 Show that the joint equation of the bisectors for the distinct lines y =
λx , y = µx is

(λ + µ)x2 + 2(λµ − 1)xy − (λ + µ)y2 = 0.

7.3.3 Let ax2 + 2hxy − ay2 = 0 be the joint equation of the bisectors of
a line-pair. Show that the line-pair must have the following form for
some constant α

(α − h)x2 + 2axy + (α + h)y2 = 0.

7.3.4 In each of the following cases find the perpendicular bisectors of the
given line-pairs:

(i) 3x2 + 4xy + 2y2,
(ii) 2x2 − 3xy + y2,
(iii) x2 − 5xy + 3y2 + 11x − 21y + 27.

7.3.5 Let L , L ′ be parallel lines. Show that their parallel bisector is an axis
of the real parallel line-pair L L ′.
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Fig. 7.2. A parallel pencil intersecting a hyperbola

7.4 Asymptotic Directions

For a given conic Q, each direction in the plane determines a parallel pencil
of lines, giving rise to an associated midpoint locus. Normally the locus is a
line, but exceptionally it may be empty, or even the whole plane. In this section
we turn our attention to these exceptional cases. The motivation is provided by
illustrations of hyperbolas, which suggest that there are directions in which the
curve tends to a ‘point at infinity’. For instance as t → ∞ so the point x = t ,
y = 1/t on the hyperbola xy = 1 becomes ever closer to the x-axis. In this
sense the hyperbola has a ‘point at infinity’ on the x-axis, and likewise one on
the y-axis. The reader can find out more about this idea in EGAC, where the
ordinary plane is extended to the ‘projective’ plane by the addition of idealised
‘points at infinity’ which need to be taken into account. Thus when considering
the intersections of Q with a parallel pencil the mental picture is that Q meets
the general line of the pencil at two points. For directions in which Q tends to
a ‘point at infinity’ that mental picture persists, provided we think of every line
in the pencil having just one intersection with Q in the Euclidean plane, plus
another ‘at infinity’. Figure 7.2 illustrates the parallel pencil of horizontal lines
intersecting the hyperbola xy = 1.

That is the motivation for studying parallel pencils in which every line L
meets a conic Q at most once. Consider therefore a line L in a direction (X, Y )

through a point (u, v). The intersection quadratic associated to Q and L has
the following form, where the coefficients are given by the formulas (4.3)

φ(t) = pt2 + qt + r.
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Our interest lies in the case when the quadratic has at most one root, moti-
vating the following definition. A direction (X, Y ) is asymptotic for Q when
p(X, Y ) = 0. We need to interpret that for a general conic (�). According to
(4.3) the coefficient p(X, Y ) is zero when

p(X, Y ) = a2 X2 + 2h XY + b2Y 2 = 0.

That is a binary quadratic equation in X , Y . It has two distinct roots when
δ < 0, a repeated root when δ = 0, and no roots when δ > 0: thus Q has two
asymptotic directions when δ < 0, just one when δ = 0, and none when δ > 0.
In particular hyperbolas have two asymptotic directions, parabolas have one,
and ellipses have none.

Example 7.12 For the hyperbola x2 + 2xy − 3y2 + 8y + 1 = 0 asymptotic
directions (X, Y ) are given by the displayed binary quadratic equation, with
roots (1, 1) and (3, −1)

0 = X2 + 2XY − 3Y 2 = (X − Y )(X + 3Y ).

An asymptote of a conic Q is a line L in an asymptotic direction that does
not intersect Q. In that case the intersection quadratic has no roots, so both co-
efficients p, q vanish. Ellipses cannot have asymptotes since they do not have
asymptotic directions: and in Chapter 10 we shall see that parabolas likewise
fail to have asymptotes, despite having a unique asymptotic direction. However
in Chapter 12 we will see that every hyperbola has two asymptotes through its
centre, and we will describe practical procedures for finding them.

Exercise

7.4.1 In each of the following cases, find asymptotic directions for the given
conic:

(i) x2 + 2xy + 3y2 + 8y + 1 = 0,
(ii) 4x2 − 4xy + y2 − 10y − 19 = 0,
(iii) x2 + 2xy − 3y2 + 8y + 1 = 0.
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Focus and Directrix

A key feature of a real circle is that it can be constructed metrically as the locus
of points at a constant positive distance from a fixed point F . The initial object
of this chapter is to present a metric construction that produces parabolas, real
ellipses, and hyperbolas. The construction involves a fixed point F , and a fixed
line D not passing through F . We will show that the standard parabolas, real
ellipses, and hyperbolas of Chapter 4 can all be constructed in this way. Indeed,
combining this with the classification of conics in Chapter 15, we will see that
any parabola, real ellipse, or hyperbola has this property. The importance of the
construction lies in the fact that constructible conics have interesting metric
properties, of physical significance. That leads us to geometry which might
otherwise remain unnoticed.

8.1 Focal Constructions

For the purposes of this text a focal construction (or just construction) is a
choice of a point F (the focus), a line D not through F (the directrix), and a
positive constant e (the eccentricity). We consider a variable point P subject to
the constraint that its distance from F is proportional to its distance from D,
where the constant of proportionality is e. Since distances are automatically
non-negative, the constraint can be written in the following form, where P D
is the distance from P to D

P F2 = e2 P D2. (8.1)

Example 8.1 Let a be a positive constant. Consider the construction whose
focus is the point F = (a, 0), whose directrix is the line x = −a, and whose
eccentricity is e = 1. Writing P = (x, y) the relation (8.1) becomes the fol-
lowing, which we recognize as a standard parabola

(x − a)2 + y2 = (x + a)2.

76
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F = (a, 0)

P = (x, y)

D

Fig. 8.1. Construction of the standard parabola

We can rewrite the general relation (8.1) explicitly using the formula (2.1)
for the distance from a point to a line. To this end let P = (x, y), let F =
(α, β), and let D = px + qy + r be the equation of the directrix in canonical
form. Then (8.1) becomes

Q(x, y) = (x − α)2 + (y − β)2 − e2(px + qy + r)2 = 0. (8.2)

Example 8.2 Consider the construction with focus F = (−1, 3), directrix
D = 2x − y + 1, and eccentricity e = √

5. In this case the reader will readily
verify that (8.1) becomes

3x2 − 4xy + 2x + 4y − 9 = 0.

Returning to the general case, the coefficients of the quadratic terms x2, xy,
y2 in (8.2) are displayed below. Clearly they cannot vanish simultaneously, so
the formula does actually define a conic Q

1 − e2 p2, −2e2 pq, 1 − e2q2.

The conics Q arising in this way are said to be constructible, and (8.2) is a con-
structible form of the equation. By direct calculation we see that the invariants
of Q are

τ = 2 − e2, δ = 1 − e2, � = −e2(pα + qβ + r)2. (8.3)
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D D D

FFF

e < 1 e =1 e > 1

Fig. 8.2. Degenerate ‘constructible’ conics

We claim that constructible conics are automatically non-degenerate, and
hence irreducible. Indeed, the condition � = 0 is equivalent to pα +qβ + r =
0, which holds if and only if F lies on D, contrary to assumption. Moreover, Q
is an ellipse when e < 1, a parabola when e = 1, and a hyperbola when e > 1.

Example 8.3 Circles are not constructible conics. Indeed (8.2) is a circle if
and only if the coefficients of x2, y2 are equal, and the coefficient of xy is
zero. That is the case if and only if p = q = 0, a contradiction.

Example 8.4 Let Q be the conic arising from a construction with focus F and
directrix D. Then D cannot intersect Q. Any intersection P satisfies P D = 0
so P F = 0, contradicting the assumption that F does not lie on D. Likewise,
F cannot lie on Q: otherwise, taking P = F we obtain F D = 0, another
contradiction.

Example 8.5 If in the construction we allow F to lie on D we obtain a de-
generate conic Q, indeed a real line-pair with vertex F when e > 1, a parallel
line-pair when e = 1, and a virtual line-pair when e < 1. We leave the reader
to check that when e = 1 the conic Q is actually a repeated line, the line being
that through F perpendicular to D.

Exercises

8.1.1 In each of the following cases determine the conic with the given
focus F , directrix D, and eccentricity e:

(i) F = (−1, 1), D = x − y + 3, e = 1/2,
(ii) F = (3, 0), D = 2x + y + 4, e = 1,
(iii) F = (−1, 3), D = 2x − y + 1, e = √

5.

8.1.2 Determine the conic with centre the origin having focus (3, 0) and
directrix the line x = 1.
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8.1.3 Verify the formulas (8.3) for the invariants of the general constructible
conic Q.

8.2 Principles for Finding Constructions

Let Q be a non-degenerate conic. Let us assume that it is constructible, and
ask how we might go about determining the focus F , the directrix D, and the
eccentricity e associated to that construction. Here are some general principles,
leading to a practical technique. We seek a point F = (α, β), a line D =
px + qy + r in canonical form, and a positive constant e, for which Q is
defined by the quadratic function of (8.2)

(x − α)2 + (y − β)2 − e2(px + qy + r)2 = 0.

For notational efficiency write this as C − e2 D2, where C is the point circle
with centre F defined by

C(x, y) = (x − α)2 + (y − β)2.

Our assumption is that Q = λ(C − e2 D2) for some non-zero scalar λ. It fol-
lows that Q − λC is a constant multiple of D2, hence a repeated line. That
suggests how we might proceed. We could take an arbitrary point F , and look
for repeated lines in the pencil of conics Q − λC . At this point a useful obser-
vation is that the delta invariant of a repeated line is zero. Thus we could start
by trying to find at least those λ for which the delta invariant of Q − λC is
zero. To make this explicit, write Q in the usual form

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

The values of λ for which the delta invariant of Q − λC is zero are easily
checked to be solutions of the following quadratic equation

λ2 − (a + b)λ + (h2 − ab) = 0.

That is precisely the characteristic equation (7.5) of the quadratic function Q.
For each eigenvalue λ we can then try to discover whether there are values of
α, β for which Q − λC is a repeated line. In the following sections we will
turn these ideas into practical techniques.

8.3 Constructions for Parabolas

A special case arises when Q is a parabola, so has zero delta invariant. In that
case λ = 0 must be an eigenvalue, and the other is λ = a + b. The eigenvalue
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λ = 0 is of no interest to us, since Q itself cannot be a repeated line. The
question is whether for the non-zero eigenvalue λ = a + b the conic Q − λC
is a repeated line, for some choice of α, β.

Lemma 8.1 The standard parabola with modulus a has a unique construction,
with focus F = (a, 0), directrix D = x + a, and eccentricity e = 1.

Proof Consider a standard parabola Q(x, y) = y2 − 4ax with a > 0. The
characteristic equation is λ(λ − 1) = 0 giving eigenvalues λ = 0, 1. Moreover

Q − C = −x2 − 2(2a − α)x + 2βy − (α2 + β2).

To be a repeated line this needs to have the form −(px + qy + r)2. And its
quadratic part −(px +qy)2 would have to be −x2, so we could assume p = 1,
q = 0. Thus we seek a constant r for which

Q − C = −(x + r)2 = −x2 − 2r x − r2.

That is only possible when 2a − α = r , β = 0, α2 + β2 = r2. Substituting
for α, β in the third relation gives a unique solution r = a for which α = a,
β = 0. In this way we obtain the following constructible form for a standard
parabola

(x − a)2 + y2 = (x + a)2.

This is of course the construction of the standard parabola given in Exam-
ple 8.1. It will follow from this lemma and the listing of conics in Chapter 15,
that any parabola has a unique focus and directrix, which we can determine in
any given example by mimicking the calculation for the standard parabola.

Example 8.6 For the parabola Q = 4x2−4xy+y2−10y−19 the characteristic
equation is λ(λ − 5) = 0, giving eigenvalues λ = 0, 5. The latter gives

Q − 5C = −(x + 2y)2 + 10αx + 10(β − 1)y − (5α2 + 5β2 + 19).

We seek α, β for which this conic is a repeated line. A necessary condition is
that it should have the same quadratic terms, up to a constant multiple. Thus the
above expression needs to have the form −(x + 2y + r)2 for some constant r .
Comparing coefficients of x , y and the constant term we see that α, β must
satisfy the relations

10α = −2r, 10(β − 1) = −4r, 5α2 + 5β2 + 19 = r2.
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Solving the first two relations for α, β in terms of r and substituting in the third
relation gives the unique solution r = 6. Thus the focus and directrix are

F =
(

−6

5
, −7

5

)
, D = x + 2y + 6.

Exercise

8.3.1 In each of the following cases verify that the given conic is a parabola
and find its axis, vertex, focus, and directrix:

(i) x2 + 2xy + y2 − 3x + 6y − 4 = 0,
(ii) x2 − 4xy + 4y2 + 10x − 8y + 13 = 0,
(iii) 4x2 − 4xy + y2 + 22x − 6y + 24 = 0,
(iv) 4x2 − 4xy + y2 + 6x − 18y + 36 = 0.

8.4 Geometric Generalities

Before moving on to the question of finding foci and directrices of real ellipses
and hyperbolas it helps to spell out some generalities. The first is that foci
always lie on axes.

Lemma 8.2 Let Q be a conic arising from a construction with focus F and
directrix D. Then the line A through F perpendicular to D is an axis for Q.

Proof We have to show A is the midpoint locus associated to its perpendic-
ular direction. Let L be any line parallel to D, intersecting A at M , and Q
at P . (Figure 8.3.) Since constructible conics are irreducible, the Component
Lemma ensures that L meets Q at most twice, and we need to show M is
their midpoint. Assume P , M are distinct, and let P ′ be the other point on L
equidistant from F . Then P F = eP D, P F = P ′F , P D = P ′ D. It follows
that P ′F = eP ′ D, so P ′ is a second intersection of L with Q, and M is the
midpoint. When P , M coincide, there is nothing to prove.

Thus a focus F of any constructible conic Q lies on an axis A, and its asso-
ciated directrix D is perpendicular to A. In particular, when Q has two distinct
foci F , F ′ we deduce that the line A joining them is an axis. In fact any central
constructible conic has two distinct constructions, as we might expect from
symmetry considerations. (The ellipse case is illustrated in Figure 8.4, and the
hyperbola case in Figure 8.5.) The following lemma verifies this formally. We
will refer to the two constructions of the lemma as mirror constructions, since
each is obtained from the other by central reflexion in the centre.
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Fig. 8.3. Axis of a constructible conic
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Fig. 8.4. Constructions of a standard ellipse
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Fig. 8.5. Constructions of a standard hyperbola
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Lemma 8.3 Let Q be a constructible conic with focus F, directrix D, and
eccentricity e. Suppose that Q has a unique centre W = (u, v) not on D. Then
Q has a second construction with focus F ′ on the same axis A as F, directrix
D′ parallel to D, and the same eccentricity e.

Proof Let F = (α, β), let D = px + qy + r be in canonical form. We can
suppose that Q = C − e2 D2, where C is the point circle with centre F . Write
x ′ = 2u − x , y′ = 2v − y for the central reflexion of the point (x, y) in
W . Observe that the conic C ′ defined below is the point circle with centre the
central reflexion F ′ = (α′, β ′) of F in W

C ′(x, y) = C(x ′, y′) = (x − α′)2 + (y − β ′)2.

Also, the line D′ defined below is parallel to D and in canonical form

D′(x, y) = D(x ′, y′) = −D(x, y) + 2(pu + qv + r).

Since W is a centre for Q, we have the relations

Q(x, y) = Q(x ′, y′)
= C(x ′, y′) − e2 D(x ′, y′)2

= C ′(x, y) − e2 D′(x, y)2.

Thus Q has a second construction with focus F ′, directrix D′, and eccentric-
ity e. Since F , F ′, W are collinear, and the axis A passes through the cen-
tre, F ′ likewise lies on A. Finally, the lines D, D′ coincide if and only if
pu + qv + r = 0, i.e. if and only if D passes through the centre, contrary
to hypothesis.

Exercise

8.4.1 Let F , F ′ be the foci of a central conic Q. Show that the perpendicular
bisector of the line joining F , F ′ is an axis of Q.

8.5 Constructions of Ellipse and Hyperbola

Let us now extend the philosophy of Section 8.2 to central conics. In that case
neither eigenvalue is zero, so we have to consider each one separately. The
standard ellipse provides a model for such calculations, simultaneously illus-
trating Lemma 8.3.
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Lemma 8.4 The standard ellipse with moduli a, b has just two constructions,
with eccentricity e defined by a2e2 = a2 − b2. The foci and directrices are

F+ = (ae, 0), D+ = x − a

e
; F− = (−ae, 0), D− = x + a

e
.

Proof The standard ellipse with moduli a, b satisfying 0 < b < a is defined
by the quadratic function

Q(x, y) = x2

a2
+ y2

b2
− 1.

The eigenvalues are λ = p, q , where pa2 = 1, qb2 = 1. Consider first the
eigenvalue λ = q of larger absolute value. Write C for the point circle with
centre F = (α, β). Then

Q − qC = (p − q)x2 + 2qαx + 2qβy − (qα2 + qβ2 + 1).

To be a repeated line this expression has the form (p − q)(x + r)2. Equating
coefficients of x , y and the constant term gives

2qα = 2(p − q)r, 2qβ = 0, −(qα2 + qβ2 + 1) = (p − q)r2.

Substituting the values of α, β from the first two relations into the third yields
a quadratic in r , namely

r2 = q

p(q − p)
. (8.4)

The right-hand side is positive, so we obtain solutions r = ±a/e, giving α =
±ae, β = 0. That produces the foci and directrices of the lemma. We leave the
reader to repeat the calculation for the eigenvalue λ = p of smaller absolute
value, producing

r2 = p

q(p − q)
. (8.5)

This time the right-hand side is negative, so there are no solutions for r , and
hence no further foci or directrices. In this way we obtain the following con-
structible forms for a standard real ellipse, one given by the ‘+’ sign, and the
other by the ‘−’ sign

(x ± ae)2 + y2 = e2
(

x ± a

e

)2
.
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Thus any standard ellipse has exactly two foci on the major axis, and two
associated directrices perpendicular to that axis. Using this fact, it will follow
from the listing of conics in Chapter 15 that any real ellipse has the same
property. In practice the foci and directrices of a non-circular real ellipse can
be found by mimicking the above calculation: the eigenvalue of larger absolute
value gives rise to two foci and two directrices, whilst that of smaller absolute
value gives rise to none.

Example 8.7 For the real ellipse Q = 7x2 + 2xy + 7y2 + 10x − 10y + 7 the
characteristic equation is λ2 − 14λ + 48 = 0 giving eigenvalues λ = 6, 8. For
the eigenvalue λ = 8 of larger absolute value we have

Q − 8C = −(x − y)2 + 2(8α + 5)x + 2(8β − 5) − (8α2 + 8β2 − 7).

For this to be a repeated line it has to have the form −(x − y + r)2. Equating
coefficients of x , y and the constant term we obtain

8α + 5 = −r, 8β − 5 = r, 8α2 + 8β2 − 7 = r2.

Solving the first two relations for α, β in terms of r , and substituting in the
third relation yields the quadratic 6r2 − 20r + 6 = 0 factorizing as (r − 3)

(6r − 2) = 0, so giving r = 3, 1/3. Substituting back we obtain the foci and
directrices

F = (−1, 1), D = x − y+3; F ′ =
(

−2

3
,

2

3

)
, D′ = x − y+ 1

3
.

To determine the eccentricity we choose a focus and directrix, and compare Q
with (8.2). Choosing the focus F and directrix D, and putting D into canon-
ical form, we see that Q is a constant multiple of the quadratic function be-
low. It follows that the eccentricity is given by e2 = 1/4, so we must have
e = 1/2

(x + 1)2 + (y − 1)2 = 1

4

(
x − y + 3√

2

)2

.

Lemma 8.5 The standard hyperbola with moduli a, b has just two construc-
tions, with eccentricity e defined by a2e2 = a2 + b2. The foci and directrices
are

F+ = (ae, 0), D+ = x − a

e
; F− = (−ae, 2), D− = x + a

e
.
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Proof The analysis of the standard ellipses in Lemma 8.4 can be repeated for
the standard hyperbolas

Q(x, y) = x2

a2
− y2

b2
− 1.

The eigenvalues are λ = p, q defined by pa2 = 1, qb2 = −1. The calculations
are identical to those for the ellipse. The eigenvalue λ = q gives rise to the
expression (8.4) for r2 having a positive right-hand side, and producing the foci
F+, F− and directrices D+, D− in the statement of the lemma. The eigenvalue
λ = p gives rise to the expression (8.5) for r2 having a negative right-hand
side, so giving no solutions.

Thus the standard hyperbola also has exactly two foci on one axis, and two
parallel directrices perpendicular to that axis. Using this fact, it will follow
from the listing of conics in Chapter 15 that any hyperbola has the same prop-
erty. As in the case of the real ellipse, one eigenvalue gives rise to two foci and
two directrices, whilst the other gives rise to none.

Example 8.8 For the hyperbola Q = 3x2−4xy+2x+4y−9 the characteristic
equation is λ2 − 3λ − 4 = 0 giving eigenvalues λ = −1, 4. For the eigenvalue
λ = −1 we have

Q + C = (2x − y)2 + 2(1 − α)x + 2(2 − β)y + (α2 + β2 − 9).

For this to be a repeated line it has to have the form (2x − y + r)2. Equating
coefficients of x , y and the constant term we obtain

2(1 − α) = 4r, 2(2 − β) = −2r, α2 + β2 − 9 = r2.

Solving the first two relations for α, β and substituting in the third relation
yields r2 = 1 giving r = ±1. The value r = 1 gives the focus F = (−1, 3)

and the directrix D = 2x − y + 1: and the value r = −1 gives the focus F ′ =
(3, 1) and the directrix D′ = 2x − y − 1. Putting the directrices into canon-
ical form, we see that the eccentricity is given by e2 = 5, so e = √

5. The
eigenvalue λ = 4 gives rise to a quadratic equation in r having no roots.

Exercises

8.5.1 Find the foci and the directrices of the following conics:

(i) 9x2 − 24xy + 41y2 − 15x − 5y = 0,
(ii) 3x2 − 2xy + 3y2 − 8x + 8y + 15 = 0,
(iii) 3x2 + 4xy − 2x − 6y − 4 = 0.
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8.5.2 Find the foci and the directrices of the following conics:

(i) x2 + 8xy − 5y2 − 2x + 6y − 6 = 0,
(ii) 3x2 + 2xy + 3y2 − 6x + 14y − 101 = 0,
(iii) 3x2 − 10xy + 3y2 + 8x − 24y − 8 = 0.

8.5.3 Show that the conic Q = 30x2 − 12xy + 35y2 − 24x − 16y − 16
has one focus at the origin. Find the equation of the corresponding
directrix, the eccentricity, and the coordinates of the second focus.
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Tangents and Normals

As we stated in Chapter 4, a fundamental idea in studying a conic Q is to
understand how it intersects lines. It is however not just the intersections of
Q with a single line which are significant for its geometry, but its intersec-
tions with pencils of lines. That is a major theme of this text, which we intro-
duced in Chapter 7 by studying the intersections of Q with parallel pencils of
lines. In this chapter we develop the theme by studying how Q meets a general
pencil of lines through a point on Q itself. That leads to a central geomet-
ric idea, the ‘tangent’ to Q at a point, representing the best possible first-order
approximation. In Section 9.3 we introduce the companion idea of the ‘normal’
to Q at a point, the line through that point perpendicular to the tangent. In the
next three chapters we will use the material developed so far to look at the three
main conic classes of ellipses, parabolas, and hyperbolas in more detail. Each
has distinctive features, which are best discussed within the context of their
class.

9.1 Tangent Lines

Consider the pencil of lines through a fixed point W on a conic Q. Think of
another point W ′ on Q, and consider the line L through W , W ′. (Figure 9.1.)
The idea is that as W ′ moves along Q into coincidence with W , so L will tend
towards a limiting position, the ‘tangent’ line at W . To make this idea work we
need to impose just one restriction on the point W , namely that it should be
non-singular on Q.

Lemma 9.1 Let Q be a conic, and let W = (u, v) be a non-singular point on
Q. There is a unique line T through W touching Q at W , with equation

(x − u)Qx(u, v) + (y − v)Qy(u, v) = 0. (9.1)

88
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Fig. 9.1. Idea of a tangent

Proof Parametrize the line L through W with direction vector (X, Y ) as x(t) =
u + t X , y(t) = v + tY . Its intersections with Q are given by the intersection
quadratic pt2 + qt + r = 0. Since W lies on Q we have r = Q(u, v) = 0,
so t = 0 is a root, corresponding to the intersection at W . The condition for
L to touch Q at W (Section 4.4) is that t = 0 should be a repeated root, i.e.
that

0 = q = Qx(u, v)X + Qy(u, v)Y.

The coefficients of X , Y cannot both be zero: otherwise, W is a centre of Q by
Lemma 5.3, hence singular on Q, contrary to hypothesis. Thus q = 0 defines
a unique direction (X, Y ), namely X = −Qy(u, v), Y = Qx (u, v). To finish
the proof we need only observe that the unique line through W with direction
(X, Y ) is that in the statement of the result.

The unique line T of Lemma 9.1 is the tangent line to Q at W , and (9.1)
is the tangent formula. Of course, the concept does not apply to conics whose
zero set is empty, or a single point. The mental picture is enhanced by noting
that when Q is irreducible, no tangent line to Q meets Q at a further point:
indeed, the intersection quadratic of Lemma 9.1 has a repeated zero t , but is
not identically zero, so cannot have another zero.

Exercises

9.1.1 Show that no tangent to a conic Q can pass through a centre not lying
on Q.

9.1.2 Show that the tangent at any point W on a line L is the line L itself.

9.2 Examples of Tangents

As we will see in Chapter 15, much of the detailed geometry of conics can
be established via specific calculations on standard conics. That is the reason
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D L

F

Fig. 9.2. Latus rectum of the standard parabola

for their continued prominence in the examples. Moreover, standard conics
also admit particularly simple parametrizations, frequently simplifying calcu-
lations. The following examples illustrate these points, adding to our store of
knowledge.

Example 9.1 Consider the standard parabola Q(x, y) = y2 −4ax with a > 0,
and a point (u, v) on Q, so satisfying v2 = 4au. Then Qx = −4a, Qy = 2y,
and the tangent formula shows that the tangent at (u, v) has equation vy =
2a(u + x).

A typical illustration is provided by the geometry of the ‘latus rectum’.
Recall that a focus F of a constructible conic Q always lies on an axis. The
chord L of Q through F perpendicular to that axis is known as a latus rectum
of Q. Thus a parabola has a unique latus rectum, whilst the real ellipse and
hyperbola have two. Such chords have interesting geometric properties.

Example 9.2 For the standard parabola with modulus a the focus is F =(a, 0)

so the latus rectum L is the chord x = a. We claim that the tangents at the ends
of the chord pass through the point where the axis y = 0 meets the directrix D
defined by x = −a. (Figure 9.2.) Indeed, the ends of the chord are the points
(a, ±2a) with tangents the lines y = ±(x + a). Thus the tangents have slopes
±1, and pass through the required point (−a, 0).
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Example 9.3 Another illustration arises when we consider the standard
parabola parametrized as x(t) = at2, y(t) = 2at . In that case the tangent at
the point with parameter t has equation

x − t y + at2 = 0.

From this formula one can immediately read off the fact that points on
the parabola with different parameters have tangents with different directions.
Thus the standard parabola has no parallel tangents. By contrast, the tangents
at the ends of a diameter of an ellipse or hyperbola are automatically paral-
lel. Here is another application of the formula, establishing a useful geometric
property of the parabola, namely that a chord passes through the focus if and
only if the tangents at the ends are perpendicular.

Example 9.4 Consider the standard parabola y2 = 4ax with modulus a para-
metrized as x(t) = at2, y(t) = 2at . By Example 9.3 the tangents at the points
with parameters t1, t2 are the following lines with respective slopes 1/t1, 1/t2{

x − t1 y + at2
1 = 0

x − t2 y + at2
2 = 0.

By Exercise 4.2.3 the chord through the points with parameters t1, t2 has equa-
tion

(t1 + t2)(y − 2at1) = 2
(
x − at2

1

)
.

It remains to observe that the condition for the chord to pass through the focus
(a, 0) is that t1t2 = −1: and by Example 6.5 that is the condition for the tan-
gents to be perpendicular.

A potentially interesting question is how many tangents to a given conic
pass through a fixed point in the plane. For the standard parabola that produces
another typical application of the formula for the tangent to the parametrized
curve.

Example 9.5 For the standard parabola Q(x, y) = y2 − 4ax with modulus
a, parametrized as x(t) = at2, y(t) = 2at , we saw that the tangent line at
the point (x, y) is x − t y + at2 = 0. The tangent passes through a fixed point
P = (u, v) if and only if t satisfies the quadratic equation u − tv + at2 = 0.
The number of roots is determined by its discriminant v2 − 4ax : there are two
roots when v2 > 4ax (P is outside the parabola), just one when v2 = 4ax (P
lies on the parabola), and none when v2 < 4ax (P lies inside the parabola). For
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instance, when u = −a, v = 0 the point P is the intersection of the axis with
the directrix, so outside the parabola. The quadratic then has roots t = ±1
producing the ends (a, ±2a) of the latus rectum, agreeing with the result of
Example 9.2.

Example 9.6 Consider conics Q(x, y) = αx2 + βy2 + γ with α, β, γ non-
zero, so having no singular points. We will show that the tangent at a point
w = (u, v) on Q has equation

αux + βvy + γ = 0.

This is particularly easy to remember, since one has only to replace x2, y2 in
Q by ux , vy respectively. The result is easily verified. Since w lies on Q we
have αu2 + βv2 + γ = 0: also, Qx (x, y) = 2αx , Qy(x, y) = 2βy so by the
tangent formula the tangent is

0 = (x − u)(2αu) + (y − v)(2βv) = 2(αux + βvy + γ ).

Example 9.7 A particular case of the previous example is provided by the
standard ellipses and hyperbolas of Examples 4.2, 4.3 with equations

x2

a2
+ y2

b2
= 1,

x2

a2
− y2

b2
= 1.

In those cases the tangents at a point (u, v) have respective equations

ux

a2
+ vy

b2
= 1,

ux

a2
− vy

b2
= 1.

Example 9.8 For the standard ellipse with moduli a, b, parametrized as x(t) =
a cos t , y(t) = b sin t , the tangent at the point with parameter t has equation

bx cos t + ay sin t = ab.

Likewise, for the standard hyperbola with moduli a, b, parametrized as x(t) =
a cosh t , y(t) = b sinh t , the tangent at the point with parameter t has equation

bx cosh t − ay sinh t = ab.

The concept of tangency can extended in a natural way. Two conics Q, Q′

are tangent at a common non-singular point P when the tangents to Q, Q′ at
P coincide.
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Example 9.9 The major and minor auxiliary circles of the standard ellipse
E with moduli a, b were defined to be the concentric circles of radii a, b.
(Figure 5.3.) The major auxiliary circle meets E only at the vertices (±a, 0)

on the major axis, and shares common tangents x = ±a. Likewise, the minor
auxiliary circle meets E only at the vertices (0, ±b), and shares common
tangents y = ±b. Thus the auxiliary circles are tangent to E at the
vertices.

Exercises

9.2.1 In each of the following cases find the tangent to the conic Q at the
point P:

(i) Q = x2 − 6y2 − 3, P = (3, 1),
(ii) Q = 2x2 + 3y2 − 11, P = (2, 1),
(iii) Q = (x − y − 1)2 − 4y, P = (1, 0).

9.2.2 Find the common parallel tangents of the circles of radius 1 having
centres (1, 0), (0, 2).

9.2.3 Let L , M be lines in different directions, intersecting at a single point.
Show that the tangent to the line-pair L , M at any other point on L
(respectively M) is L (respectively M). This exercise shows that a
tangent line to a conic can have an asymptotic direction.

9.2.4 Show that the tangents to a conic Q at the ends of a diameter are
parallel.

9.2.5 Let a, b be positive constants. A circle of radius b touches the
parabola y2 = 4ax at the vertex. Find the coordinates of the other
intersections of the two conics.

9.2.6 Show that there is a fixed line L such that the tangents at points with
parameter t on the ellipse x(t) = a cos t , y(t) = b sin t and the hy-
perbola x(t) = a sec t , y(t) = b tan t intersect on L .

9.2.7 Show that the hyperbola xy = c2 intersects the standard ellipse with
moduli a, b in four, two, or no points according as ab > 2c2, ab =
2c2, or ab < 2c2. In the second case, show that the conics are tangent
at the intersections.

9.2.8 Let E be a standard ellipse with eccentricity e. Show that the tan-
gents at the ends of a latus rectum have slopes ±e, pass through the
intersection of the major axis with a directrix, and pass through an
intersection of the minor axis with the major auxiliary circle.
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T

Fig. 9.3. A normal line to an ellipse

9.3 Normal Lines

Let Q be a conic, and let W = (u, v) be a non-singular point on Q. As we saw
in the previous section, there is a unique tangent line T at W , meeting Q at no
other point. The line through W perpendicular to T is the normal line N to Q
at W , and we refer to W as the foot of the normal. By Lemma 9.1 the normal
line to a conic Q at a non-singular point W = (u, v) has the equation

(x − u)Qy(u, v) − (y − v)Qx(u, v) = 0. (9.2)

Our first example illustrates a very basic fact in the geometry of the circle,
namely that all the normals to a real circle pass through its centre.

Example 9.10 Consider the real circle of radius r with centre (α, β) given by

C(x, y) = (x − α)2 + (y − β)2 − r2.

Using (9.2) we see that the normal at any point (u, v) on the circle is the line

(x − u)(v − β) − (y − v)(u − α) = 0.

Clearly, this relation is satisfied by x = α, y = β so the normal line passes
through the centre.

Example 9.11 Consider the parametrization x(t) = a cos t , y(t) = b sin t of
the standard ellipse with moduli a, b. The normal at the point with parameter
t has equation

ax sin t − by cos t = (a2 − b2) sin t cos t.

Thus the normal at the point with parameter t passes through the centre if and
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only if sin t = 0 or cos t = 0: these relations hold at exactly four points on the
ellipse, namely the vertices (±a, 0), (0, ±b). More generally, it can be shown
that there are at most four points on an ellipse at which the normal passes
through a given point.

Example 9.12 Let Q be the standard parabola Q(x, y) = y2 − 4ax with
a > 0. Using (9.2) we see that the normal at a point (u, v) on Q is

vx + 2ay = 2v(u + 2a).

In particular, when Q is parametrized as u(t) = at2, v(t) = 2at , the normal at
t has equation

t x + y = at3 + 2at.

In the preceding section we asked for the number of tangents to the standard
parabola through a given point (u, v), and found an answer that accorded well
with our mental picture for a parabola. It is much more interesting to ask for
the number of normals through (u, v).

Example 9.13 In the previous example we saw that the normal to the standard
parabola Q, parametrized as x(t) = at2, y(t) = 2at , is t x + y = at3 + 2at .
Thus the values of t for which the normal passes through (u, v) are given by
the cubic equation

at3 + (2a − u)t − v = 0. (9.3)

The number of roots depends on the choice of (u, v). In principle, a cubic has
either three distinct real roots, or two distinct roots (one repeated), or no real
roots. The repeated root case is transitional between the other two, and one
expects it to hold on a curve in the (u, v)-plane. We will determine this curve
explicitly. To this end, note that the displayed cubic has no term in t2, so by
polynomial algebra the sum of its roots is zero. It follows that when we have a
repeated root t , the other root must be −2t . The normals at these points are

t x + y = at3 + 2at, −2t x + y = −8at3 − 4at.

We leave the reader to check that the normals intersect at the point u = a(3t2+
2), v = −2at3. Eliminating t from these relations we find that points on the
transitional curve satisfy the equation of a cubic curve

4(u − 2a)2 = 27av2. (9.4)
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Fig. 9.4. Evolute of a parabola

Figure 9.4 shows the cubic curve (9.4) superimposed on an illustration of
the standard parabola. It is called the semicubical parabola. The cubic is sym-
metric about the u-axis, cuts the parabola twice when u = 8a, and exhibits
a ‘cusp’ when u = 2a. Three distinct normals pass through any point inside
the cubic, whilst none pass through points outside: points on the cubic lie on
two normals, with the sole exception of the ‘cusp’, which lies on just one. The
concept of a cusp does not arise for conics, but is a significant feature in the
algebraic geometry of general plane curves, discussed in EGAC. The semicubi-
cal parabola appears in the differential geometry of plane curves, as a special
case of the ‘evolute’ construction, explained in EGDC.

Exercises

9.3.1 In each of the following cases find the normal to the conic Q at the
point P:

(i) Q = x2 + y2 − 2x + 4y − 20, P = (−2, −2),
(ii) Q = 2x2 + 2y2 − 4x + 9y, P = (0, 0),
(iii)Q = (x − y − 1)2 − 4y P = (1, 0).

9.3.2 Show that if all the normals to a conic Q pass through a fixed point
P , then Q is a circle, and P is its centre.

9.3.3 Consider the normals to the standard parametrized parabola x(t) =
at2, y(t) = 2at passing through a point (u, 0) on the axis. Verify that
for u > 2a there are three distinct normals, that for u = 2a there is
just one, and that for u < 2a there are none.

9.3.4 Find the coordinates of the point where the normal at the point with
parameter t on the standard parabola x(t) = at2, y(t) = 2at meets
the parabola again.

9.3.5 Consider a parallel pencil of lines x = my + c, with m fixed. Show
that the parameters t1, t2 of the points on the standard parametrized
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parabola x(t) = at2, y(t) = 2at , where it meets a line x = my + c,
are related by t1 + t2 = 2m. Use this fact to show that the normals to
the parabola, at its intersections with any line in the pencil, intersect
on the normal at a point with fixed parameter t3.

9.3.6 Let Q be a standard parabola, and let P be a point through which
three normals to Q can be drawn. Show that the feet of the normals
lie on a circle through the vertex.

9.3.7 Show that the normal at any point on a standard ellipse Q meets the
major axis at a point between the two foci.

9.3.8 Let H be a standard hyperbola, and let Y be the half-plane y > 0.
Show that for any point P in Y there are exactly two points in Y on
H at which the normals pass through P .

9.3.9 A focal chord of a non-degenerate conic Q is a chord passing through
a focus. Through any point P on a standard ellipse Q there are two
focal chords, meeting the ellipse again at points P ′, P ′′. Show that
the tangents to Q at P ′, P ′′ intersect on the normal at P .

9.3.10 A focal chord intersects a standard ellipse E at the points P , Q. The
tangents at P , Q intersect at R, and the normals at S. Show that RS
passes through the other focus of E .
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The Parabola

The parabola occupies a transitional position between the ellipse and the hy-
perbola, with its own distinctive geometry. In several respects it is easier to
deal with than ellipses and hyperbolas, and for that reason we discuss it first.
For instance, it has but a single axis of symmetry, whereas ellipses and hy-
perbolas have two. On that basis we develop a simple, efficient technique
for determining the main geometric features in Section 10.2. Finally, we use
these techniques to establish a unique feature of the parabola, that it admits a
parametrization by quadratic functions.

10.1 The Axis of a Parabola

For irreducible conics (circles excepted) the direction quadratic gives two per-
pendicular directions, which may give rise to an axis. For conics with a unique
centre (in particular, ellipses and hyperbolas) we can say more. Lemma 10.1
guarantees that both directions give rise to axes. However, for parabolas we
need to think again. The illustration of the standard parabola in Figure 8.1 sug-
gests that it has only one axis, intersecting the parabola at a unique vertex. The
next result verifies that is the case for any parabola. As usual we consider a
general conic

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Lemma 10.1 Any parabola Q has a unique axis, of the form ax + hy + k or
hx + by + k, for some constant k. Moreover, the axis intersects Q in a unique
vertex.

Proof Since Q is a parabola we have δ = ab − h2 = 0. Thus the direction
quadratic aX2 + 2h XY + bY 2 = 0 is a perfect square, with just one root up to

98
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Fig. 10.1. The conic Q of Example 10.1

constant multiples. We can determine a root explicitly. At least one of the vec-
tors (−h, a), (−b, h) is non-zero, and they are linearly dependent. Moreover,
they satisfy the direction quadratic, i.e. it is satisfied when X = −h, Y = a, or
X = −b, Y = h. By (7.1) the midpoint locus associated to the perpendicular
directions (a, h), (h, b) are defined by the relations

{
(a2 + h2)x + h(a + b)y + (ga + f h) = 0
h(a + b)x + (h2 + b2)y + (gh + f b) = 0.

We leave the reader to check that these equations agree with those in the state-
ment of the lemma, up to constant multiples.

Example 10.1 The conic Q(x, y) = 4x2 − 4xy + y2 − 10y − 19 = 0 is a
parabola, with quadratic terms (2x − y)2. The axis direction is (2, −1), and
(7.2) shows that the axis is 2x − y + 1 = 0. (Figure 10.1.)

10.2 Practical Procedures

The starting point for analyzing the geometry of parabolas is the following
result, that parabolas can be written in a particularly useful form.

Lemma 10.2 Any parabola Q can be written Q = L2 + L ′, where L, L ′ are
lines in different directions.
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Proof By definition, a parabola has invariants δ = 0, � �= 0. Since δ = 0 the
quadratic terms form a perfect square, so Q = L2 +L ′, with L = αx +βy+γ ,
L ′ = α′x + β ′y + γ ′ lines. By Lemma 5.3, centres for Q are given by the
relations

0 = Qx = 2αL + α′, 0 = Qy = 2βL + β ′.

If L , L ′ have the same direction the vectors (α, β), (α′, β ′) are linearly de-
pendent, and there is a line of centres. But then Theorem 5.4 gives � = 0, a
contradiction establishing the result.

Example 10.2 Parabolas do not have asymptotes. By Lemma 10.2 any para-
bola Q can be written in the form Q = L2 + L ′, where L , L ′ are lines in
different directions. An asymptote must be parallel to the axis, hence parallel
to L: thus it would have the form L + k, for some constant k. Since L , L ′

intersect, the parallel lines L + k, L ′ + k2 likewise intersect. However, the
intersection satisfies the relations L + k = 0, Q = L2 + L ′ = 0, so is a point
where L + k meets the parabola. It follows that no line L + k parallel to L can
be an asymptote.

Now consider a general parabola Q, given by (�). Since δ = 0, at least one
of a, b is non-zero. We can assume a �= 0: then aQ = L2 + L ′ where

L(x, y) = ax + hy, L ′(x, y) = a(2gx + 2 f y + c).

By Lemma 10.1, the axis of Q has the form M = L + k, for some constant k.
One line of working suffices to check that we can then write Q in the form
C = M2 + M ′, where M , M ′ are given as follows. The question then is how
to choose k to ensure that M is the axis

M = L + k, M ′ = L ′ − 2kL − k2. (10.1)

Lemma 10.3 The line M is an axis for Q = M2 + M ′ if and only if M, M ′

are perpendicular. In particular, the axis M intersects Q in a unique vertex.

Proof The relation (7.2) shows that M = L + k is an axis if and only if k
has the value displayed below: and the reader will readily check that this is the
unique value of k for which the lines M , M ′ are perpendicular

k = a(ag + h f )

a2 + h2
.

Clearly, an intersection of M , Q is an intersection of M , M ′, and conversely.
(That holds for any choice of k.) But M , M ′ intersect when L = −k, L ′ =
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−k2: and since L , L ′ have different directions these relations have a unique
solution. In particular, that is the case when M is the axis, when the intersection
is the unique vertex.

This result provides a simple technique for analysing parabolas. In a nut-
shell it is this. Given a parabola Q = L2 + L ′, find the unique value of k for
which the lines M , M ′ defined in (10.1) are perpendicular: then M is the axis,
and the intersection of M , M ′ is the vertex. Starting from Q, we have to do
little more than solve a single linear equation in k.

Example 10.3 The parabola Q(x, y) = 4x2 − 4xy + y2 − 10y − 19 can be
written Q = L2 + L ′, where L(x, y) = 2x − y, L ′ = −10y − 19. With the
above notation we have

M = 2x − y + k, M ′ = −4kx + 2(k − 5)y − (k2 + 19).

By calculation, M , M ′ are perpendicular if and only if k = 1. Thus M =
2x − y + 1, M ′ = −4(x + 2y − 5). The vertex is the point where M = 0,
M ′ = 0, namely x = 3/5, y = 11/5.

Exercises

10.2.1 In each of the following cases show that the given conic is a parabola,
and determine its axis and vertex:

(i) 4x2 − 4xy + y2 − 10y − 19 = 0,
(ii) (x − y − 1)2 − 4y = 0,
(iii) x2 − 2xy + y2 + 2x + 3y + 2 = 0.

10.2.2 In each of the following cases show that the given conic is a parabola,
and determine its axis and vertex:

(i) x2 − 4xy + 4y2 + 10x − 8y + 13 = 0,
(ii) x2 − 4x + 4y2 − 5y − 1 = 0,
(iii) 4x2 − 4xy + y2 − 8

√
5x − 16

√
5y = 0.

10.2.3 In each of the following cases show that the given conic is a parabola,
and determine its axis and vertex:

(i) y = ax2 + 2bx + c,
(ii) x2 − 2xy + y2 − 6

√
2x − 2

√
2y − 6 = 0,

(iii) 4x2 − 4xy + y2 + 8
√

5x + 6
√

5y − 15 = 0.
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10.3 Parametrizing Parabolas

In Example 4.4 we parametrized the standard parabola by considering its in-
tersection with the pencil of lines parallel to its axis, so each line meets the
parabola just once. The principle applies to any parabola Q. As in Section 10.1
we write Q in the form Q = M2 + M ′ with M , M ′ perpendicular lines. The
pencil of lines parallel to the axis M comprises the lines M + 2t with t any
scalar. Then Q meets a line in the pencil when M = −2t , Q = 0, or equiv-
alenty M = −2t , M ′ = −4t2. Since M , M ′ are perpendicular, these linear
equations in x , y have a unique solution, providing a parametrization of the
form

x(t) = x0 + x1t + x2t2, y(t) = y0 + y1t + y2t2. (10.2)

Example 10.4 The parabola of Example 10.3 was written Q = M2 + M ′ with
M , M ′ perpendicular lines, namely

M(x, y) = 2x − y + 1, M ′(x, y) = −4(x + 2y − 5).

We obtain a parametrization by solving the linear equations M = −2t , M ′ =
−4t2. Written out in full

2x − y + 1 = −2t, −4(x + 2y − 5) = −4t2.

We leave the reader to verify that the resulting parametrization is

x(t) = 3 − 4t + t2

5
, y(t) = 11 + 2t + 2t2

5
.

Here is an interesting illustration of the value of parametrization, namely
the remarkable reflective property of a parabola.

Example 10.5 Consider the standard parabola y2 = 4ax with focus F =
(a, 0). We claim that for any point P on the parabola the perpendicular bisec-
tors of the line L through F , P and the ‘horizontal’ line M through P are the
tangent and normal lines at P . It suffices to show that the tangent is parallel
to a bisector. We can parametrize the parabola as in (4.4) so P = (at2, 2at).
Then the lines are

L = 2t x + (1 − t2)y − 2at, M = y − 2at.

Deleting the constant terms and multiplying out, we see that the parallel lines
through the origin have joint equation 2t xy + (1 − t2)y2. Thus the joint
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F

Fig. 10.2. Reflective property for a parabola

equation of the perpendicular bisectors is

t x2 + (1 − t2)xy − t y2 = (x − t y)(t x + y).

It remains to observe that by Example 9.3 the tangent line at P is the line
x − t y + at2 = 0, which is parallel to the first factor.

That establishes the reflective property of the parabola, that for any incident
ray through the focus, the reflected ray is parallel to the axis. Thus the pen-
cil of incident rays through the focus gives rise to a pencil of reflected rays
parallel to the axis. That fact is of enormous practical importance for line-
of-sight radio communications at ultra high frequencies. Parabolic dishes, ob-
tained by rotating a parabola about its axis, are now a ubiquitous part of the
landscape: they are mounted on houses to receive satellite TV, on masts to
provide permanent microwave links for emergency and public services, whilst
giant versions are erected outside urban areas for radio astronomy research
and early warning missile systems. In all these cases a wavefront can be prop-
agated or received via an antenna at the focus. In optics the same property is
used in torches and searchlights to produce a parallel beam of high intensity
light.
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Exercises

10.3.1 Show that the parametrization x = at2, y = 2at of a standard
parabola y2 = 4ax with a > 0 can also be derived by considering
the pencil of non-horizontal lines 2x = t y through p = (0, 0).

10.3.2 The line αx + βy + aγ = 0 meets the standard parabola y2 = 4ax
with focus F at the points P , Q. And the lines through F , P and
F , Q meet the parabola at R, S. Show that the line joining R, S is
γ x − βy + aα = 0.

10.3.3 Let C be a standard parabola with focus F and directrix D. For dis-
tinct points P , Q on C let R be the point where the line P Q meets
the axis, and let S be the point where the tangents intersect. Show that
the distance from R to F coincides with the distance from S to D.

10.3.4 Show that if a > b > 0 and c > 2(a − b) then the parabolas y2 =
4a(x + c) and y2 = 4bx have two common normal lines.

10.3.5 Show that the normals at the ends of a focal chord of a parabola y2 =
4ax intersect on the parabola y2 = a(x − 3a).

10.3.6 In each of the following cases find a parametrization of the given
parabola of the form (10.2):

(i) y = ax2 + 2bx + c,
(ii) x2 + 2xy + y2 − 6x − 2y + 4 = 0,
(iii) (x − y − 1)2 = 4y.
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The Ellipse

The geometry of the ellipse differs substantially from that of the parabola, since
it has two axes of symmetry (whereas the parabola has just one) and is a central
conic (whereas the parabola is not). Our first result is that all the lines passing
through the centre meet the ellipse in two distinct points, distinguishing the
ellipse visually from the hyperbola, and establishing the existence of exactly
four vertices.

In Section 11.2 we take up the question of parametrization. Unlike parabo-
las, it is not possible to parametrize general ellipses by quadratic functions of
a single variable. However ellipses can be parametrized in terms of rational
functions, quotients of polynomial functions. Such rational parametrizations
have interesting applications to other areas of mathematics. By way of illustra-
tion we indicate how to solve a problem of ancient Greek mathematics, that of
listing right-angled triangles with integer sides.

The remainder of the chapter is devoted to focal properties of ellipses, in
particular the interesting metric property that the sum of the distances from
any point on the ellipse to the two foci is constant. The final section establishes
a reflective property for ellipses, analogous to that for parabolas.

11.1 Axes and Vertices

Perhaps one of the most obvious properties of the circle is that every line
through the centre cuts the circle twice. The ellipse should be thought of as
a natural generalization of the circle, so one expects it to have the same prop-
erty. Indeed that is the case.

Lemma 11.1 Every line L through the centre of a real ellipse Q meets Q in
exactly two distinct points.

105
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Proof Let (u, v) be the centre. As in Section 1.3 we can parametrize L as
x(t) = u + t X , y(t) = v + tY . Then intersections with Q are given by the
roots of the quadratic equation (4.2)

φ(t) = pt2 + qt + r = 0.

The coefficients are given by the formulas (4.3). Since (u, v) is a centre
Qx (u, v) = 0, Qy(u, v) = 0, and the formulas show that q = 0. Thus inter-
sections are given by the roots of a quadratic φ(t) = pt2 +r = 0. The constant
term r = Q(u, v) is non-zero, since the centre does not lie on Q. Moreover the
sign of p is independent of the direction (X, Y ), since the assumption δ > 0
means that p(X, Y ) does not vanish. Thus φ(t) = 0 either has no roots for any
choice of direction, or it has two distinct roots for any choice. We must have
the latter possibility: by assumption there is a point in the zero set of Q, and
the line L joining it to the centre meets Q.

The results of Chapter 7 show that any conic Q with non-zero delta invariant
(circles excepted) has two distinct non-zero eigenvalues, giving rise to perpen-
dicular axes through the centre. In particular, that is the case for the ellipse,
each axis meeting the ellipse at two vertices equidistant from the centre. The
distance between the two vertices on an axis is the length of that axis, and the
distance from the centre to a vertex is its semilength. The axis of greater (resp.
smaller) length is the major (resp. minor) axis, and corresponds to the eigen-
value of smaller (resp. larger) absolute value. (Section 7.2.) The two circles
concentric with an ellipse passing through the vertices are the auxiliary cir-
cles associated to Q: the minor (resp. major) auxiliary circle is that of smaller
(resp. larger) radius.

It follows from the above that any ellipse has four distinct vertices. It turns
out that ‘vertices’ are important concepts in their own right in the differential
geometry of plane curves, with conics providing the first interesting examples.
Thus, even in the limited arena of conics, we see concepts of general differen-
tial geometry making their first tentative appearance.

Exercises

11.1.1 Let C , C ′ be real circles, centre the origin of radii r , r ′ with r < r ′.
Any half-line emanating from the origin meets C , C ′ at unique points
Q, Q′. Let P be the intersection of the vertical line through Q with
the horizontal line through Q′. Show that the locus of P is the zero
set of a standard ellipse.
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11.1.2 Let E be a standard ellipse, and let A+, A− be the ends of the major
axis. For any point P on E (distinct from A+, A−) let P+, P− be the
intersections of the tangent at P with the tangents at A+, A−. Show
that for any two distinct points P , Q on E the lines P+Q−, P−Q+

intersect on the major axis.
11.1.3 Let K be a point on the major axis of a standard ellipse E . A line

through K meets the ellipse at points P , Q. Show that the tangents at
P , Q intersect the line through K parallel to the minor axis at points
equidistant from K .

11.1.4 Let E be an ellipse, let P be a point on E , and let Q, R be the projec-
tions of P on to the axes. Show that there is an ellipse E ′ concentric
with E such that the lines Q R are normals to E ′.

11.2 Rational Parametrization

It is tempting to wonder whether the regular parametrization of the parabola in
Section 10.3 by quadratic functions of the following form can be extended to
the ellipse

x(t) = x0 + x1t + x2t2, y(t) = y0 + y1t + y2t2. (11.1)

Example 11.1 That certainly does not work for the unit circle defined below

C(x, y) = x2 + y2 − 1.

Suppose indeed that the functions x(t), y(t) of (11.1) parametrize C . Substitute
x(t), y(t) for x , y in C(x, y) = 0. Equating coefficients of t4 gives x2

2+y2
2 = 0,

so x2 = y2 = 0: then, equating coefficients of t2 we obtain x2
1 + y2

1 = 0
and hence x1 = y1 = 0. It follows that any parametrization (11.1) would be
constant.

At this point a little thought goes a long way. The virtue of parametrizing
a parabola by the pencil of lines parallel to its axis is that the lines meet the
parabola just once. Actually, the mental picture is that all the lines in the pencil
meet the conic twice, once in the Euclidean plane and once at the ‘point at
infinity’. That motivates the following geometric approach, applicable to more
general conics Q. Consider the intersections of Q with the pencil of lines L
through a fixed point P on Q. The lines L are parametrized by their slope t . In
principle, L meets Q in two points, namely the point P itself, and some other
point whose coordinates depend on t . Here is an example.



108 The Ellipse

P

Q

Fig. 11.1. Rational parametrization of the circle

Example 11.2 Consider the case when Q is the circle below, and P is chosen
to be the point P = (−a, 0), where a > 0

Q(x, y) = x2 + y2 − a2.

Any ‘non-vertical’ line through P has the form y = t (x + a) for some scalar t
and meets the circle at P , and at some other point whose coordinates depend on
t . (Figure 11.1.) To find the second point, substitute in Q to obtain a quadratic
in x

(1 + t2)x2 + 2at2x + a2(t2 − 1) = 0.

Observe that x = −a must be a root of this quadratic, so (x + a) is a factor.
By inspection, the other factor is (1 + t2)x + a(t2 − 1), so the coordinates of
the second point of intersection are

x(t) = a

(
1 − t2

1 + t2

)
, y(t) = t (x(t) + a) = 2at

1 + t2
.

Two observations are worth making. The first is that P is the only point on
the circle that does not correspond to any value of t . And the second is that the
result can be deduced from the standard parametrization x(t) = a cos θ , y(t) =
a sin θ using the half-angle formulas displayed below. Attractive though this
alternative derivation may be, it has the drawback of hiding the underlying
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geometric idea

t = tan
θ

2
, cos θ = 1 − t2

1 + t2
, sin θ = 2t

1 + t2
.

Although the functions x(t), y(t) in Example 11.2 are not of the form (11.1)
they are quotients of such functions. Thus they are examples of rational func-
tions of the form u(t)/v(t), where u(t), v(t) are polynomials in t . Rational
parametrizations of conics have applications which are useful, interesting and
quite unexpected. Here is an application to a classical problem in number the-
ory.

Example 11.3 A problem of ancient Greek mathematics was that of finding
all right-angled triangles with integer sides, i.e. all positive integers X , Y , Z
with X2 +Y 2 = Z2. The reader is probably familiar with the 3, 4, 5 triangle of
school mathematics. It is interesting to ask whether there are other examples,
indeed how one might generate all possible examples. The key observation is
that for such a triangle the point (x, y) on the circle x2 + y2 = 1 defined by
x = X/Z , y = Y/Z is a rational point (meaning that x , y are both rational
numbers) in the positive quadrant; conversely, any such point (x, y) with x =
X/Z , y = Y/Z where X , Y , Z are positive integers gives rise to a triangle with
the required properties. Thus the problem is that of determining rational points
on the circle. In principle we know how to generate all points on the circle, via
the parametrization of Example 11.2

x(t) = 1 − t2

1 + t2
, y(t) = 2t

1 + t2
.

That suggests we ask for those values of t which ensure that x(t), y(t) are
rational. Clearly, if t is rational then x(t), y(t) are rational: conversely, if x(t),
y(t) are rational the first displayed formula shows that t2 is rational, and the
second shows that t is rational. We can therefore assume t is rational, say
t = u/v with u, v coprime integers: and for (x, y) to lie in the positive quadrant
we need 0 < t < 1, i.e. 0 < u < v. As u, v vary so we obtain infinitely many
solutions to our problem

X = v2 − u2, Y = 2uv, Z = v2 + u2.

The first six entries in the table below are obtained by taking u < v ≤ 5, the
first being the 3, 4, 5 triangle of school geometry. The last two entries are of
historical interest: they appear on a Babylonian clay tablet dating to around
2000BC.
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u v X Y Z

1 2 3 4 5
2 3 5 12 13
1 4 15 8 17
3 4 7 24 25
2 5 21 20 29
4 5 9 40 41

4 9 65 72 97
5 12 119 120 169

Exercises

11.2.1 Let a be a non-zero constant. By considering the pencil of lines
through the point P = (0, 0) show the circle of radius |a| centred
at the point (a, 0) has the rational parametrization

x(t) = 2a

1 + t2
, y(t) = 2at

1 + t2
.

11.2.2 Let a be a non-zero constant. By considering the pencil of lines
through the point P = (2a, 0) show that the circle of radius |a| cen-
tred at the point (a, 0) has the rational parametrization

x(t) = 2at2

1 + t2
, y(t) = 2at

1 + t2
.

11.2.3 Starting from the parametrization x(t) = a cos t , y(t) = b sin t of the
standard ellipse with moduli a, b use the half-angle formulas to derive
a rational parametrization.

11.2.4 By considering the pencil of lines through the point P = (−a, 0),
show that the standard ellipse with moduli a, b has the rational para-
metrization

x(t) = a

(
b2 − a2t2

b2 + a2t2

)
, y(t) = 2ab2t

b2 + a2t2
.

11.3 Focal Properties

In Chapter 8 we saw that general ellipses have exactly two constructions, each
obtained from the other by central reflexion in the centre. There are two foci
on the major axis: the corresponding directrices are perpendicular to the major
axis, and their parallel bisector is the minor axis.
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D−

F− F+

D+

Q

P

Fig. 11.2. Metric property of an ellipse

Example 11.4 The foci of an ellipse can lie inside, on, or outside the mi-
nor auxiliary circle. The transitional case, when the foci lie on the circle, is
Fagnano’s ellipse. It has a simple interpretation in terms of the eccentricity e.
Consider the standard ellipse with moduli a, b. For Fagnano’s ellipse the foci
F+ = (ae, 0), F− = (−ae, 0) must be distance b from the centre, so ae = b.
However, the eccentricity e is defined by the relation a2e2 = a2−b2. It follows
from these relations that e2 = 1/2, so that e ∼ 0.707.

The next example describes an interesting metric property of ellipses which
has no counterpart for the parabola.

Example 11.5 Let Q be the standard ellipse with moduli a, b satisfying 0 <

b < a, and eccentricity e. The foci are denoted F+, F− and the corresponding
directrices D+, D−. We use the fact that the distance between the directrices
is 2a/e. Now let P be any point on Q. Since P F+ = eP D+, P F− = eP D−

we have

P F+ + P F− = e{P D+ + P D−} = e{2a/e} = 2a. (11.2)

Thus the sum of the distances from the foci F+, F− to any point P on the
ellipse takes the constant value 2a, the length of the major axis.

This example is the basis of the string construction for the practical tracing
of ellipses with given foci, a method long familiar to gardeners, groundsmen,
graphic artists, and engineers. Mark two points F+, F− on a sheet of paper
(for instance, by inserting drawing pins) and join them by a string of fixed
length 2a. Now take a pencil and place it against the taut string. The pencil
tip P will move along a curve, which is the required ellipse. When F+, F−

coincide, the curve will be the circle of radius a centred at that point.

Example 11.6 The focal properties of ellipses are of importance in astronomy.
The orbit described by an object in space acting under an inverse square law
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Table 11.1. Eccentricities for the planets

planet e planet e planet e

Mercury 0.21 Saturn 0.06 Earth 0.02
Venus 0.01 Uranus 0.05 Neptune 0.01
Mars 0.09 Pluto 0.25 Jupiter 0.05

P

F − F +

Fig. 11.3. The string construction

of attraction is known to be a conic, indeed a real ellipse, a hyperbola, or a
parabola. For instance the planets describe elliptical orbits, with one focus at
the sun. The eccentricities of the planets (correct to two decimal places) are
listed in Table 11.1. It is noteworthy that they are small, so their orbits are
very nearly circles: for instance, the foci of the earth’s orbit are so close (in
astronomical terms) that both lie inside the sun. Likewise, the orbits of com-
munications satellites have extremely small eccentricities, so are virtually cir-
cular. By contrast, comets can have elliptical, hyperbolic, or parabolic orbits:
for instance Halley’s comet has an elliptical orbit of eccentricity ∼ 0.97.

The reflective property of a parabola has an analogue for real ellipses, pro-
viding a good application of the natural trigonometric parametrization (4.5) of
the ellipse.

Example 11.7 Consider the standard ellipse with moduli a, b and eccentric-
ity e defined by a2e2 = a2 − b2. Recall that the foci are the points F+ =
(ae, 0), F− = (−ae, 0). We claim that for any point P on the ellipse the per-
pendicular bisectors of the lines L+, L− through F+, P and F−, P are the
tangent and normal lines at P . It suffices to show that the tangent is parallel
to a bisector. We can parametrize the ellipse as in (4.5) so P = (ac, bs) with
c = cos t , s = sin t . Then L+, L− are defined by

L+ = bsx − a(c + e)y + abes, L− = bsx − a(c − e)y − abes.
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F − F +

Fig. 11.4. Reflective property for an ellipse

Deleting the constant terms and multiplying out, we see that the parallel lines
through the origin have joint equation

b2s2x2 − 2abscxy + a2(c2 − e2)y2.

Direct computation verifies that their perpendicular bisectors have joint equa-
tion (bcx + asy)(asx − bcy) and it remains to observe that by Example 9.7
the tangent line at P is the line bcx + asy = ab parallel to the first factor.

Thus for any incident ray through one focus of an ellipse, the reflected ray
passes through the other focus. Put another way, the pencil of rays emanating
from one focus gives rise to a pencil of reflected rays through the other focus.
The parabola can be thought of as a special case of the ellipse by thinking of
its ‘point at infinity’ as a second ‘focus’: thus for any incident ray through the
focus the reflected ray passes through the other ‘focus’. Compared with the
parabola, the reflective properties of the ellipse have received relatively little
attention. In optics the property is used in designing car headlamps, to focus
a light beam on the road ahead. And in acoustics it is used in the construction
of ‘whispering galleries’, whereby one person standing at a focus can be heard
whispering by a second person at the other focus, but by no-one else.

Exercise

11.3.1 A string of length 2 is attached to the points (1, 0), (0, 1). Show that
the resulting ellipse is 3x2 + 2xy + 3y2 − 4x − 4y = 0.
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The Hyperbola

The geometry of the hyperbola has features in common with that of the real
ellipse. Both types have a unique centre, two axes of symmetry, and two fo-
cal constructions. However, they differ fundamentally in one respect, namely
that the hyperbola has two asymptotes. These represent a major feature of its
geometry, providing the material for Section 12.1. The axes of a hyperbola
are intimately related to the asymptotes, indeed they are their perpendicular
bisectors. So far as parametrization is concerned, hyperbolas are analogous
to ellipses. They cannot be parametrized by quadratic functions of a single
variable, but do admit interesting rational parametrizations. For instance, the
rectangular hyperbola has a rational parametrization very reminiscent of that
for the circle. We use this to show how the geometry of the hyperbola underlies
a standard technique of integration from foundational calculus.

12.1 Asymptotes

As we saw in Section 7.4 hyperbolas have two asymptotic directions, distin-
guishing them from ellipses and parabolas. Moreover, each asymptotic direc-
tion gives rise to a unique asymptote.

Lemma 12.1 Any hyperbola H has exactly two asymptotes, namely the lines
through the centre in the asymptotic directions.

Proof Since δ < 0 the quadratic terms in H factorize as U V , where U , V are
lines through the origin in the asymptotic directions. Write H = U V + W + c,
where W is linear and c is the constant term. By definition, asymptotes are
parallel lines L = U + p, M = V + q not intersecting H . We claim there are
unique constants p, q , r with

H = L M + r = U V + (qU + pV ) + (pq + r).

114
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Since U , V are in different directions, the constants p, q are uniquely deter-
mined by W = qU + pV , and r by c = pq + r . Note that r �= 0, else H
is a line-pair L M : it follows that L , M cannot intersect H , so are asymptotes.
Finally, observe that H = L M + r has the same centre as the line-pair L M ,
namely the intersection of L , M .

In an example one first determines the factors U , V of the quadratic terms
in H : then p, q, r are found by equating coefficients of x , y and the constant
term in H = (U + p)(V + q) + r .

Example 12.1 The hyperbola H = p2x2 − q2 y2 − 1 has centre the origin.
The quadratic terms factorize as the lines px ± qy, which pass through the
centre so must be the asymptotes.

Example 12.2 The reader will readily check that the conic H defined below
is a hyperbola

H(x, y) = 77x2 + 78xy − 27y2 + 70x − 30y + 29.

The quadratic terms factorize as (11x − 3y)(7x + 9y), so to determine the
asymptotes we seek constants p, q, r for which

H(x, y) = (11x − 3y + p)(7x + 9y + q) + r.

Equating coefficients of x , y yields the following equations in p, q, r

7p + 11q = 70, 9p − 3q = −30, pq + r = 29.

The first two equations give p = −1, q = 7, and then the third yields r = 36.
Thus the asymptotes are the lines

11x − 3y − 1 = 0, 7x + 9y + 7 = 0.

The asymptotes of a hyperbola H form a line-pair with vertex the centre,
splitting the plane into two asymptotic cones. Consider now the way in which
H intersects the pencil of all lines through its centre.

Lemma 12.2 In one asymptotic cone every line through the centre meets H
twice, and in the other no line meets H.

Proof For a line L through the centre (u, v) in the direction (X, Y ) parame-
trized as x(t) = u + t X , y(t) = v + tY the intersection quadratic is as follows,
where the coefficients are given by (4.3)

φ(t) = pt2 + qt + r = 0.
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Fig. 12.1. A line in one asymptotic cone

As in the proof of Lemma 11.1 the coefficient q = 0, so intersections are given
by the roots of pt2 + r = 0. Moreover, r is non-zero and independent of the
direction. Thus the quadratic has two distinct solutions when p, r have opposite
signs, and no solutions otherwise. Further, p is given by the quadratic terms in
H , so can be written p = ST , with S, T lines through the origin parallel to the
asymptotes. But p has opposite signs on the two cones determined by S, T .
Thus in one cone L does not intersect H , and in the other it intersects H twice.

Thus the zero set of a hyperbola H splits into two branches, in opposite
halves of one asymptotic cone, and symmetric under central reflexion in the
centre. There are two lines through the centre of particular interest, namely the
axes. The next result spells out their connexion with the asymptotes. As usual
we assume H is given by a formula

H(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Lemma 12.3 The axes of a hyperbola H are the perpendicular bisectors of its
asymptotes. One axis meets H twice: the other does not meet H.

Proof Lemmas 12.1 and 7.3 show that the asymptotes and axes all pass through
the centre. Their directions are roots of the respective binary quadratics

aX2 + 2h XY + bY 2 = 0, h X2 + (b − a)XY − hY 2 = 0.

It follows that the axes are the perpendicular bisectors of the asymptotes. As
we pointed out in Section 6.4, the bisectors lie in different cones: so one axis
meets H twice, whilst the other does not meet H .
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The axis of a hyperbola H intersecting it twice is the transverse axis; and
the axis not intersecting H is the conjugate axis. These definitions are consis-
tent with those given for the standard conics in Section 4.1. Thus a hyperbola
has two distinct vertices, whose distance apart is the length of the transverse
axis.

Example 12.3 The hyperbola H = p2x2 − q2 y2 − 1 has axes x = 0, y = 0:
the former does not meet H (so is the conjugate axis), whilst the latter meets
H at the points where x = ±1/p (so is the transverse axis). The standard
hyperbola with moduli a, b is the case when p = 1/a, q = 1/b, with vertices
the points (±a, 0).

The point of the next example is that it illustrates how elementary geometry
can throw light on a topic in foundational calculus, namely that of sketch-
ing graphs of rational functions y = g(x)/h(x). Any value x = s with
h(s) = 0 gives rise to a line x = s which the graph cannot intersect. When
g is quadratic and h is linear, the graph is a hyperbola, and the geometric sig-
nificance of the line x = s is that it is an asymptote. Calculus methods do not
produce the second asymptote: its relevance to the graph is only clear from the
geometry.

Example 12.4 Consider the graph of a rational function y = g(x)/h(x),
where g, h are given by formulas of the form

g(x) = px2 + 2qx + r, h(x) = x − s.

We assume h(x) is not a factor of g(x), so g(s) �= 0. A moment’s thought will
show that the graph is the zero set of the conic H defined by

H(x, y) = yh(x) − g(x) = −px2 + xy − 2qx − sy − pr.

The conic H is a hyperbola, with unique centre x = s, y = 2(ps + q). Its
quadratic terms are x(y − px), so the asymptotes are the lines through the
centre parallel to x = 0, y = px , namely x = s, y = p(x + s) + 2q.
Figure 12.2 illustrates the case p = 1, q = −1, r = 2, s = 1 with asymptotes
the lines x = 1, y = x − 1.

Example 12.5 The tangent to the hyperbola xy = 1 at the point (u, v) is
the line vx + uy = 2uv. Parametrize the branch of the hyperbola in the first
quadrant as x(t) = t , y(t) = 1/t with t > 0. Then the tangent at t is x +
t2 y − 2t , with direction −t2 : 1. The limiting tangent direction as t → ∞ is
1 : 0, with limiting tangent y = 0: likewise, the limiting tangent direction as
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Fig. 12.2. A hyperbola as a graph

t → 0 is 0 : 1, with limiting tangent x = 0. This example suggests that the
asymptotes x = 0 and y = 0 can be regarded as ‘tangents’ to the hyperbola at
the points ‘at infinity’ in the directions 0 : 1 and 1 : 0.

In fact this idea can be formalized. In EGAC it is shown that any conic can
be considered in the projective plane, obtained from the ordinary plane by
adding ‘points at infinity’. Tangents can then be introduced analogously, and
asymptotes appear naturally as tangents to the conic at ‘points at infinity’.

Exercises

12.1.1 In each of the following cases verify that the given conic is a hyper-
bola, and find its centre, axes and asymptotes:

(i) 6xy + 9x + 4y = 0,
(ii) 2x2 − xy − 3y2 + 4x − 1 = 0,
(iii) 3x2 + 6xy + 2y2 + 6x + 10y + 1 = 0,
(iv) x2 + 2xy − 3y2 + 8y + 1 = 0.

12.1.2 In each of the following cases verify that the given conic is a hyper-
bola, and find its centre, axes, and asymptotes:

(i) 4x2 − 9y2 − 24x − 36y − 36 = 0,
(ii) 6x2 + 11xy − 10y2 − 4x + 9y = 0,
(iii) y2 − 4xy − 5x2 + 42x + 6y − 63 = 0.
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12.1.3 Find the hyperbola which touches the y-axis at the origin, touches the
line 7x − y − 5 = 0 at the point (1, 2), and has an asymptote parallel
to the x-axis.

12.2 Parametrizing Hyperbolas

Recall again the natural parametrization of parabolas by quadratic functions of
the form

x(t) = x0 + x1t + x2t2, y(t) = y0 + y1t + y2t2. (12.1)

In the previous chapter we noted that such parametrizations cannot be extended
to ellipses. Likewise, it turns out that hyperbolas do not admit parametrizations
of this form. There is however a halfway house. The derivation of (12.1) used
the fact that the axis direction for a parabola is asymptotic, so lines parallel
to the axis meet the parabola at a unique point. Since a hyperbola H has two
asymptotic directions it is natural to consider its intersection with the parallel
pencils of lines in those directions. To implement this idea, write H = L M +r
where L , M are the asymptotes, and r is a non-zero constant. Now consider
the intersection of H with the pencil of parallel lines L = t . Since L itself does
not intersect H , every point on H lies on just one line L = t , with t �= 0. The
point of intersection is determined by

L(x, y) = t, M(x, y) = −r

t
. (12.2)

Each non-zero value of t corresponds to a unique point on H . For positive
t the corresponding points lie on one branch, and for negative t on the other
branch. Solving the two linear equations (12.2) for x , y explicitly in terms of
t we obtain solutions of the following form, parametrizing one branch when
t > 0, and the other when t < 0

x(t) = x0 + x1t + x2t2

t
, y(t) = y0 + y1t + y2t2

t
. (12.3)

Example 12.6 A simple illustration is provided by the hyperbola H = xy −1.
In this case L(x, y) = x , M(x, y) = y, r = −1 and (12.2) have the solutions
x(t) = t , y(t) = 1/t .

Example 12.7 The hyperbola H = 6x2 + 11xy − 10y2 − 4x + 9y = 0 can be
written H = L M + r , where L = 3x − 2y + 1, M = 2x + 5y − 2 and r = 2.
Solving the equations (12.2) we obtain the parametrization

x(t) = (t − 1)(5t + 4)

19t
, y(t) = −2(t − 1)(t − 3)

19t
.
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P

Fig. 12.3. Parametrizing a rectangular hyperbola

Observe that (12.3) are rational parametrizations of the hyperbola H . By
considering the pencil of lines through a fixed point P on H one obtains ratio-
nal parametrizations akin to that obtained for the circle.

Example 12.8 Consider the point P = (0, a) on the ‘upper’ branch of the
rectangular hyperbola H = y2 − x2 − a2. Any ‘non-vertical’ line through P
has the form y = t x + a for some t and meets H at P , and some other point
whose coordinates depend on t . To find the second point, substitute y = t x +a
in H(x, y) = 0 to obtain the quadratic

x{(t2 − 1)x + 2at} = 0.

The root x = 0 corresponds to the intersection with H at P itself. The other
root gives the required rational parametrization

x(t) = 2at

1 − t2
, y(t) = t x(t) + a = a

(
1 + t2

1 − t2

)
.

For −1 < t < 1 these formulas parametrize the ‘upper’ branch, whilst for
t < −1 and t > 1 they parametrize the two halves of the ‘lower’ branch,
missing the single point (0, −a). Note that the formulas are undefined at t =
±1, corresponding to the lines through P in the asymptotic directions.

Here is an application. It makes sense of a calculus technique for integrat-
ing certain functions arising in the physical sciences, where it is traditional to
suppress the underlying geometric idea.
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Example 12.9 The usual technique for evaluating the indefinite integral below
is on the level of a trick ∫

dx√
1 + x2

.

The technique is to make the substitution x = 2t/(1−t2), reducing the integral
to one of the following form∫

2 dt

1 − t2
=

∫
dt

1 + t
+

∫
dt

1 − t
= log

(
1 + t

1 − t

)
.

Clever though this may be, it begs a question. Is there a way of viewing the
problem in which the substitution is a natural step? The key is to write y =√

1 + x2, and observe that then (x, y) is a point on the ‘upper’ branch of the
hyperbola y2 − x2 = 1. As in Example 12.8 that branch is parametrized by
the formulas below, with −1 < t < 1, and we see that the substitution is a
perfectly natural one

x(t) = 2t

1 − t2
, y(t) = 1 + t2

1 − t2
.

Exercises

12.2.1 Show that the hyperbola x2 + 2xy − 3y2 + 8y + 1 = 0 can be
parametrized by the formulas

x(t) = −3t2 − 4t + 5

t
, y(t) = t2 + 4t + 5

t
.

12.2.2 By considering the pencil of lines through the point P = (−a, 0)

show that the standard rectangular hyperbola x2 − y2 = a2 has the
rational parametrization

x(t) = a

(
1 + t2

1 − t2

)
, y(t) = 2at

1 − t2
.

12.3 Focal Properties of Hyperbolas

Virtually no mention has been made of the trace invariant τ since its introduc-
tion in Chapter 4. It is however of particular relevance to hyperbolas, for the
following reason. Consider the general conic

H(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)



122 The Hyperbola

wide narrow

Fig. 12.4. Wide and narrow hyperbolas

We ask when the trace invariant can vanish. Recall that τ is defined by the
formula τ = a + b. Thus τ = 0 if and only if b = −a. In that case the delta
invariant is δ = −a2 − h2 < 0. Thus for a non-degenerate conic H the trace
invariant can only vanish when H is a hyperbola.

Example 12.10 For the standard hyperbola with moduli a, b we can inter-
pret the vanishing of the trace invariant in terms of the eccentricity e. For the
standard hyperbola τ = 0 if and only if a = b. By Lemma 8.5 the eccentricity
is defined by the relation a2e2 = a2 + b2: thus a = b if and only if e2 = 2.
On this basis a general hyperbola is said to be rectangular when e = √

2. For
standard hyperbolas the rectangular type can be regarded as a transitional type
between standard hyperbolas with a > b (having ‘wide’ branches) and those
with b > a (having ‘narrow’ branches). As we will see in Section 13.3, these
subclasses of hyperbolas exhibit a surprising geometric difference.

In Example 11.5 we showed that the sum of the distances from a variable
point P on an ellipse to its foci is constant. There is an analogous result for
hyperbolas, namely that on each branch the difference of the distances from a
variable point P to the foci is constant.

Example 12.11 Let H be a standard hyperbola with moduli a, b and eccen-
tricity e. The foci are denoted F+, F− and the directrices D+, D− so for any
point P on the hyperbola we have P F+ = eP D+, P F− = eP D−. We then
have

P F+ − P F− = e(P D+ − P D−) = e

(±2a

e

)
= ±2a.

The ‘+’ case arises when P is on the negative branch of H , and the ‘−’ case
when P is on the positive branch. (Figure 12.5.) Thus in absolute value, the



12.3 Focal Properties of Hyperbolas 123

F−
F+

P

D+D−

Fig. 12.5. Metric property of a hyperbola

F− F+

Fig. 12.6. Reflective property for a hyperbola

difference between the distances from P to the foci F+, F− has the constant
value 2a, the length of the transverse axis.

Example 12.12 The hyperbola shares a reflective property of the ellipse, de-
scribed in Example 11.7, namely that for any incident ray emanating from one
focus, the reflected ray passes through the other focus. Consider the standard
hyperbola H with moduli a, b, eccentricity e, and foci the points F+ = (ae, 0),
F− = (−ae, 0). For a general point P on H we write L+, L− for the lines
through F+, P and F−, P . Then the claim is that the perpendicular bisectors
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of L+, L− are the tangent and normal lines to H at P . The proof is virtu-
ally identical to that given for the ellipse. We parametrize H as in (4.6) so
P = (±a cosh t, b sinh t), the ‘+’ case for the positive branch, and the ‘−’
case for the negative branch. We leave the reader to repeat the details of Ex-
ample 11.7, replacing the trigonometric functions by the hyperbolic functions.

The reflective property of the hyperbola (like that of the ellipse) has received
little attention compared with that given to the parabola. In optics it has been
used to construct compact reflecting telescopes, using a hyperbolic secondary
mirror.
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Pole and Polar

Understanding the way in which a conic Q intersects lines is a recurring theme
in this text. The foundations were laid in Chapter 4, where we studied intersec-
tions of Q with a single line. The idea was developed in Chapter 7 by study-
ing intersections with parallel pencils. And Chapter 9 continued the theme,
by studying the intersections of Q with the pencil of lines through one of its
points. In this chapter we remove all the restrictions, by considering the inter-
sections of Q with the pencil of all lines through an arbitrary point W in the
plane.

The case when Q is a circle suggests that the qualitative picture depends on
how W lies relative to Q. (Figure 13.1.) The transitional case, when W lies on
Q, was elucidated in the previous chapter: every line through W meets Q once
again, with the sole exception of the tangent line for which the intersections
coalesce. When W is inside Q we expect every line through W to intersect
Q twice. But when W is outside Q we expect some lines to intersect Q twice,
some lines not to intersect Q at all, and just two exceptional lines to be tangent.

13.1 The Polars of a Conic

We could verify our expectations for a circle by direct calculation. It is however
more productive to consider the question for a general conic

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

We need an efficient technique to determine the tangents to Q passing through
a given point. To motivate the definition (in some measure) recall that (17.2)
expresses Q in terms of its matrix A by the following formula, where z =
(x, y, 1)

Q(x, y) = z AzT .

125
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W

W

QQ

W outside Q W inside Q

Fig. 13.1. Circle intersecting pencils of lines

Now let P = (u, v) be any point. We define the polar of Q with respect to P
to be the following function, where w = (u, v, 1)

L(x, y) = wAzT . (13.1)

It will be useful to express this in more concrete terms. Carrying out the matrix
multiplications we find that the polar is given explicitly by the formula

L(x, y) = x(au + hv + g) + y(hu + bv + f ) + (gu + f v + c).

Example 13.1 The formula shows that the polar of the unit circle Q = x2 +
y2 − 1 with respect to P = (u, v) is L = ux + vy − 1. More generally, for a
conic Q = αx2 + βy2 + γ we have L = αux + βvy + γ . (That covers the
standard circles, ellipses, and hyperbolas.) Observe that L is a line, save when
P is the centre, and u = 0, v = 0.

Some of the more basic properties of the polar can be deduced by writing it
in the the form

2L(x, y) = 2Q(u, v) + (x − u)Qx(u, v) + (y − v)Qy(u, v). (13.2)

The coefficients of x , y are Qx (u, v), Qy(u, v). Provided these do not both
vanish, L defines a line, the polar line of Q with respect to the pole P . The
function L only fails to be a line when both partials vanish, which according
to Lemma 5.3 is the condition for P to be a centre for Q. A special case arises
when the pole lies on Q: in that case Q(u, v) = 0 so by (9.1) the polar line is
the tangent line to Q at P .
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Exercises

13.1.1 Show that the polar lines of the points (1, 3), (2, 1), (3, −1) with
respect to the circle x2 + y2 = 4 are concurrent.

13.1.2 Let Q be a conic, and let W = (u, v), Z = (x, y) be points. Show
that Z lies on the polar line with respect to the pole W if and only if
W lies on the polar line with respect to the pole Z .

13.1.3 Let M be a line. Show that the polar line of the repeated line Q = M2

with respect to a pole (u, v) not on M is M(u, v)M , and deduce that
J is identically zero.

13.1.4 Use the standard parametrization of the circle (x − a)2 + y2 = 4a2

to show that the polar of any point on that circle with respect to the
circle (x + a)2 + y2 = 4a2 touches the parabola y2 = −4ax .

13.1.5 Let C , C ′ be circles having distinct centres. Show that if the polar
lines of a point A with respect to C , C ′ intersect at B then the per-
pendicular bisector of the line joining A, B is the radical axis of the
circles.

13.1.6 Let P be a point on the hyperbola 2y2 − x2 = 1. Show that the polar
line of P with respect to the parabola y2 = x touches the hyperbola.

13.2 The Joint Tangent Equation

The geometric significance of the polar line is explained by the following
result.

Lemma 13.1 Let P = (u, v) be a point which is not a centre of the conic Q,
and let L be the polar line with respect to P. Then a point (x, y) lies on a line
through P tangent to Q if and only if J (x, y) = 0, where

J (x, y) = L(x, y)2 − Q(u, v)Q(x, y). (13.3)

Proof The line through (u, v), (x, y) is parametrized as x(t) = u + t X , y(t) =
v + tY where X = x − u, Y = y − v and meets Q when the intersection
quadratic

φ(t) = Q(u + t X, v + tY ) = pt2 + qt + r = 0.

The line is tangent to Q if and only if this quadratic has a repeated root, i.e. if
and only if its discriminant q2 − 4pr = 0. It is convenient to write this in the
equivalent form

(q + 2r)2 = 4r(p + q + r).
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Fig. 13.2. Pole and polar

It remains to identity this relation with (13.3). First, observe that

r = φ(0) = Q(u, v), p + q + r = φ(1) = Q(x, y).

It remains to note that the formulas (4.3) for the coefficients in φ give the
following expression for q: combining this with (13.2) gives q + 2r = 2L as
required

q = (x − u)Qx(u, v) + (y − v)Qy(u, v).

Here is the mental picture. In principle J is a conic. Suppose P does not lie
on Q, and the polar L is a line, intersecting Q in two points. The formula (13.3)
shows that the intersections of L , Q coincide with those of J , Q. Thus there
are two points on Q which lie on tangents to Q through P . Indeed, those points
must be the points of tangency, and L is the line joining them. Moreover, every
point on each tangent through P lies on Q, so the tangents are the components
of J . For that reason J is called the joint tangent equation of Q with respect
to P . In the special case when P lies on Q we have Q(u, v) = 0 so L is the
tangent at P , and J = L2 is the repeated tangent line.

Example 13.2 For the unit circle C = x2 + y2 − 1 the polar line of C with
respect to a point P = (u, v) distinct from the centre is the line L = 2(ux +
vy − 1). And the joint equation of the tangents is

(ux + vy − 1)2 = (u2 + v2 − 1)(x2 + y2 − 1).
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For instance, when P = (0,
√

2) the joint equation of the tangents is the real
line-pair displayed below

x2 − y2 + 2
√

2y − 2 = (x − y +
√

2)(x + y −
√

2).

The tangents through P are then the components of the joint equation, i.e.
the lines x − y + √

2 = 0, x + y − √
2 = 0. Note that the tangents in this

example are perpendicular, since the coefficients of x2, y2 in the joint equation
are respectively 1, −1, with zero sum.

Example 13.3 The tangent line at a point (a, b) on the rectangular hyperbola
Q(x, y) = x2 − y2 −1 has equation ax −by = 1. It follows that no tangents to
Q pass through the origin. That appears to be at odds with the fact that when
the pole is the centre u = 0, v = 0 the joint equation J (x, y) = x2 − y2 does
represent a real line-pair, in fact the asymptotes y = ±x . What is happening
here is that there are points (u, v) arbitrarily close to the origin where tan-
gents to Q intersect, and have the asymptotes as limiting positions. Of course
Lemma 13.1 does not apply, since when u = 0, v = 0 the pole is a centre.

The fact that no tangents pass through the centre in this example is a special
case of a visually compelling general fact.

Example 13.4 Generally speaking, if the centre P of a conic Q does not lie
on Q then no tangent to Q can pass through it. Indeed for any point Z on
Q there is a corresponding point Z ′ on Q for which Z , P , Z ′ are collinear.
Were the tangent at Z to pass through P it would also pass through Z ′. In that
case the tangent would meet Q in at least three distinct points, so would be a
component of Q by the Component Lemma: that contradicts the assumption
that P does not lie on Q.

It is natural to ask for the significance of the polar line when it fails to in-
tersect Q. The most satisfying answer (mathematically) is reserved for readers
who pursue the geometry of complex conics, for instance in EGAC. However,
even within the confines of this text, such a situation is not without interest.

Example 13.5 The polar line with respect to the pole (u, v) for the standard
parabolas Q = y2 − 4ax with a > 0 is

L(x, y) = vy − 2a(x + u).

In particular, the polar line with respect to a pole (u, 0) on the x-axis is the line
x = −u. For u > 0 the polar line fails to intersect Q; for u = 0 it is the tangent
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line to Q at its vertex; and for u < 0 it intersects Q in two distinct points, the
tangents at those points intersecting at the pole. The interest in this example is
that in the case u = a, when the pole is the focus, the polar line is the directrix
x = −a.

Naturally, we would like to know how the joint tangent equation J fits into
our broad subdivisions of conics into types. The next result provides us with
useful information. We assume henceforth that Q is not a repeated line, the
only class of conic for which J is identically zero, for any choice of pole.
(Exercise 13.1.3.)

Lemma 13.2 Let P = (u, v) be a point which is not a centre for Q, and let J
be the joint tangent equation of Q with respect to P. Then P is singular on J .

Proof It follows immediately from (13.2) that L(u, v) = Q(u, v), where L is
the polar of Q with respect to P . Then P lies on J since

J (u, v) = L2(u, v) − Q2(u, v) = 0.

It remains to show (u, v) is a centre of J . Differentiating J with respect to x , y,
writing x = u, y = v in the result, and using the fact that L(u, v) = Q(u, v),
we obtain {

Jx(u, v) = L(u, v){2Lx(u, v) − Qx(u, v)}
Jy(u, v) = L(u, v){2L y(u, v) − Qy(u, v)}.

However, differentiating (13.2) with respect to x , y, and setting x = u, y = v

in the result, we obtain the relations

2Lx(u, v) = Qx(u, v), 2L y(u, v) = Qy(u, v).

It follows immediately that Jx , Jy both vanish at P , and hence that P is a
centre for J .

In Example 6.1 we pointed out that singular conics are automatically degen-
erate. In particular, any joint tangent equation J of a conic Q is a degenerate
conic, and is therefore a real, parallel, or virtual line-pair. (Table 6.1.)

Example 13.6 As we saw above, the joint equation of the tangents to the unit
circle C = x2 + y2 − 1 with respect to the pole P = (u, v) is given by

(ux + vy − 1)2 = (u2 + v2 − 1)(x2 + y2 − 1).
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To determine the type of this degenerate conic, observe that the quadratic terms
are

(1 − v2)x2 + 2uvxy + (1 − u2)y2.

It follows that the delta invariant is δ = 1 − u2 − v2. When P is inside C we
have δ > 0, and the joint equation is a virtual line-pair. When P is on C we
have δ = 0 and the joint equation is a parallel line-pair, indeed the repeated
tangent line (ux + vy − 1)2 = 0. And when P is outside C we have δ < 0,
and the joint equation is a real line-pair.

That confirms our expectations for the circle set out in the introduction to
this chapter. We can pursue such examples further, to determine the tangents
through a given point, using the method of Section 6.2 to factorize their joint
equation.

Exercises

13.2.1 In each of the following cases find the tangents to Q through P and
decide whether or not they are perpendicular:

(i) Q = x2 + y2 − 25, P = (−1, 7),
(ii) Q = x2 + y2 − 6x − 10y + 25, P = (0, 0),
(iii) Q = x2 + y2 + 2x − 14y + 18, P = (0, 0),
(iv) Q = x2 + y2 − 14x + 2y + 25, P = (0, 0).

13.2.2 Find the two points on the x-axis from which the tangents to the circle
C below are perpendicular, and the tangents in each case

C(x, y) = x2 + y2 − 10x − 8y + 31.

13.2.3 In each of the following cases show that the joint tangent equation
with respect to a non-central pole (u, v) is a repeated line:

(i) Q(x, y) = x2 − y2, (iii) Q(x, y) = x2 − 1,
(ii) Q(x, y) = x2 + y2, (iv) Q(x, y) = x2 + 1.

13.2.4 Let Q be the standard ellipse with moduli a, b. Show that the points
P for which the tangents to Q through P have a fixed line y = x tan θ

as a bisector lie on the rectangular hyperbola

x2 − 2xy cot θ − y2 = a2 − b2.
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Fig. 13.3. The idea of the orthoptic locus

13.3 Orthoptic Loci

Here is an interesting geometric idea, which arises in studying the irregularities
of the human eye. The orthoptic locus of a non-degenerate conic Q is the set
of points W with the property that there are two perpendicular tangents to
Q through W . For a good mental picture, think of Q as a shape cut out of
thin rigid material, and fixed on a plane surface. (Figure 13.3.) Now take a
carpenter’s set square, representing a pair of perpendicular lines, and place it
so that it touches Q at two points. Then the orthoptic locus of Q is the locus of
the apex as the set square moves around Q.

Example 13.7 The simplest possible instance of an orthoptic locus is the unit
circle x2 + y2 = 1. It is easy enough to spot a point on the locus. For instance,
the lines x = 1, y = 1 are perpendicular tangents, intersecting at a point distant√

2 from the centre. The rotational symmetry of the circle then suggests that
the orthoptic locus will comprise all points at distance

√
2 from the centre, so

should be the concentric circle x2 + y2 = 2 of radius
√

2.

By contrast, it is not so obvious a priori what the orthoptic locus of the
standard conics will be. Lemma 13.1 provides the basis for an efficient tech-
nique. Recall that by Example 6.5 two tangents to Q through a point (u, v) are
perpendicular if and only if the sum of the coefficients of x2, y2 in their joint
equation is zero. That gives an equation in u, v which must be satisfied by any
point in the orthoptic locus. However, the reader should beware that a point
(u, v) satisfying this equation is only in the orthoptic locus if there are indeed
two tangents to Q through it.
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Example 13.8 We will illustrate the technique described above for the stan-
dard ellipses and circles

Q(x, y) = x2

a2
+ y2

b2
− 1, (0 < b ≤ a).

By Lemma 13.1, the joint equation of the tangents through an arbitrary point
(u, v) is

J (x, y) =
(ux

a2
+ vy

b2
− 1

)2
−

(
u2

a2
+ v2

b2
− 1

) (
x2

a2
+ y2

b2
− 1

)
.

By inspection, we see that the coefficients A, B of x2, y2 in this expression are
given by

A = b2 − v2

a2b2
, B = a2 − u2

a2b2
.

The condition for the tangents through (u, v) to be perpendicular is that the
sum of these two expressions should vanish. Thus the orthoptic locus of a
standard circle or ellipse Q lies on a concentric circle

u2 + v2 = a2 + b2.

Conversely, every point (u, v) on this circle is in the orthoptic locus. We need
only check that through such points there are two tangents to Q. It suffices to
show that for such points the delta invariant of J is negative, so J is a real
line-pair. The calculation is left to Exercise 13.3.1.

The simplest possible instance of this example is the case a = b = 1 of
the unit circle C , when we confirm the conclusion of the previous example,
namely that the orthoptic locus is the concentric circle of radius

√
2.

Example 13.9 The orthoptic locus of the hyperbola is more puzzling than the
ellipse. The reader is invited to repeat the computations of the previous exam-
ple, replacing the standard ellipses of that example by standard hyperbolas

Q(x, y) = x2

a2
− y2

b2
− 1, (a, b > 0).

The net result of the computation is that any point (u, v) in the orthoptic locus
lies on the following conic, defining a virtual circle when a < b, a point circle
when a = b, and a real circle when a > b

u2 + v2 = a2 − b2. (13.4)

In particular, in the case a < b when the hyperbola has wide branches the zero
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Fig. 13.4. Orthoptic locus of a narrow hyperbola

set of the conic (13.4) is empty, and hence the orthoptic locus is empty: the
mental picture is that any two tangents intersect at an obtuse angle. The case
a = b of the rectangular hyperbola is misleading: the zero set of the point
circle is the centre of the hyperbola, and is not in the orthoptic locus, for the
reason given in Example 13.3: thus the locus is again empty. Even in the case
a > b when the hyperbola has narrow branches one has to be careful. In that
case (13.4) is a real circle intersecting the transverse axis between the vertices.
However, there are four points on the circle, namely its intersections with the
asymptotes bx ± ay = 0, which fail to be in the orthoptic locus.

For the sake of completeness we will also determine the orthoptic locus of
a parabola, which is of relevance to the material in Chapter 8.

Example 13.10 For a standard parabola C(x, y) = y2 − 4ax with a > 0 the
polar line with respect to the pole (u, v) is vy − 2ax − 2au. Thus the joint
equation of the tangents is

J (x, y) = (vy − 2ax − 2au)2 − (v2 − 4au)(y2 − 4ax).

The coefficients of x2, y2 in J are 4a2, 4au, whose sum is zero if and only
if u = −a. It follows that the orthoptic locus of a standard parabola is the
directrix u = −a.

By combining the result of this example with the listing of conics in Chap-
ter 15 it turns out that the orthoptic locus of any parabola is its directrix line D.
That yields an alternative method for finding D, and hence the focus F . First
find the axis M and directrix D; then find the vertex V and the intersection W
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of M with D. Since V is the midpoint of the axis segment joining F , W , the
focus is given by F = 2V − W .

Example 13.11 In Example 10.3 we analyzed the geometry of the parabola
defined by

Q(x, y) = 4x2 − 4xy + y2 − 10y − 19.

The axis is the line M = 2x − y + 1, the perpendicular line through the vertex
is M ′ = x + 2y + 5, and the vertex is

V =
(

−7

5
, −9

5

)
.

The orthoptic locus can be derived using the general method of Section 13.3.
The coefficients of x2, y2 in the joint tangent equation J (x, y) are readily
checked to be 4(10v + 19), 4(5u + 11), and the locus is given by the vanishing
of the sum, so is the line u + 2v + 6 = 0. That agrees with the result given
by the formula (13.5). Moreover, it is consistent with the geometry, since the
directrix should be parallel to M ′. The intersection W of the directrix with the
axis, and the focus F , are then given by

W =
(

−8

5
, −11

5

)
, F = 2V − W =

(
−6

5
, −7

5

)
.

Finally, it is worth mentioning that one can mechanize the derivation of the
orthoptic locus, by applying the above method to a general conic (�). There
is of course a computational advantage in having a simple formula applicable
to any conic. However, it also helps to clarify the geometry. The enterprising
reader (armed with paper, pen, and a degree of patience) might like to verify
that, using the notation of (5.2), the equation of the orthoptic locus of (�) is

C(x2 + y2) − 2Gx − 2Fy + (A + B) = 0. (13.5)

That defines a conic if and only if C = δ �= 0. In that case (�) has a unique
centre, and the locus is a circle. Moreover, the centre of the orthoptic locus has
coordinates

u = G

C
, v = F

C
.

By (5.3) that coincides with the centre of (�). Thus the orthoptic locus is con-
centric with (�), as we discovered for the standard ellipses and hyperbolas.
Finally, when δ = 0 the relation (13.5) defines a line: in particular, the orthop-
tic locus of a parabola is always a line, as we claimed above.
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Exercises

13.3.1 Example 13.8 studied the orthoptic locus arising from the standard
ellipses and circles with moduli a, b satisfying 0 < b ≤ a. Show
that the delta invariant of the joint equation J of the tangents through
(u, v) in that example is

δ = −1

a2b2

{
u2

a2
+ v2

b2
− 1

}
.

Use this formula to show that δ < 0 for points (u, v) on the concentric
circle displayed below, and deduce that this circle is the orthoptic
locus

u2 + v2 = a2 + b2.

13.3.2 Supply the missing detail in Example 13.9. Show that any point (u, v)

in the orthoptic locus of a standard hyperbola with moduli a, b satis-
fies the equation u2 + v2 = a2 − b2. In the case a > b verify that
every point on this real circle lies in the orthoptic locus, with four
exceptions.

13.3.3 Let a, b be non-zero constants. Show that the zero set of the conic Qλ

defined below is non-empty

Qλ(x, y) = (ax + by − 1)2 − 2λxy.

Calculate the invariants of Qλ, and hence determine its type in terms
of the parameter λ. Find the orthoptic locus of Qλ in the case when it
is non-degenerate.
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Congruences

An interesting facet of human psychology is that we perceive differences be-
tween objects more readily than we do similarities. For instance, looking at the
illustrations of standard conics in Chapter 4 you probably feel there are clear
differences between an ellipse and a hyperbola, but may be less sure about
the similarities between two parabolas. In mathematics we can only assert that
two objects are ‘different’ when we are perfectly clear about what we mean by
them being ‘the same’. Formalising this idea is the immediate problem facing
us. One of the sublimal messages of geometry is that there is no one answer,
it all depends on your objectives. People who take a ‘black or white’ view
of the world may find this unsettling, whereas those who relish the gamut of
intermediate greys will sense interesting possibilities.

We adopt the approach of greatest relevance in the physical sciences. In a
nutshell, the idea is to think of two conics as being ‘the same’ when the one
can be superimposed on the other. That is an eminently practical criterion.
Suppose for instance that you have two ellipses drawn on a flat surface. Each
ellipse could be traced on to a plastic transparency with a felt tip pen. Mark
the centres of the ellipses. We could proceed in two steps. First we could slide
one transparency across the surface till the centres of the two ellipses coincide:
then we could rotate the transparency about the common centre to see if they
superimpose.

Thus we expect ‘translation’ and ‘rotation’ of the plane to be sufficient for
our purposes. Both concepts are special cases of the general ‘congruences’
introduced in Section 14.1. The next two sections systematically study the ef-
fect of congruences on lines and conics, with the broad objective of show-
ing that congruences leave the geometry invariant. Section 14.4 goes one step
further by stating the Invariance Theorem, that the basic invariants of conics
are left invariant by congruences. (Incidentally, that is the justification for the

137
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Fig. 14.1. Superimposition of two ellipses

nomenclature.) The proof is technical, and for that reason postponed to
Chapter 17 for the interested reader.

14.1 Congruences

We need some preliminary comments about planar maps φ. Think of the do-
main as the (X, Y )-plane, and the target as the (x, y)-plane, so φ is given by a
formula of the following form

φ(X, Y ) = (x, y). (14.1)

In this formula x , y are abbreviations for two functions x = x(X, Y ), y =
y(X, Y ), the components of φ. Recall that φ is invertible when for any point
(x, y) in the target there exists a unique point (X, Y ) in the domain for which
(14.1) holds. Solving this equation for X , Y in terms of x , y we obtain func-
tions X (x, y), Y (x, y) which are the components of the inverse map displayed
below, with domain the (x, y)-plane, and target the (X, Y )-plane

φ−1(x, y) = (X, Y ). (14.2)

The next step is to recall from linear algebra the idea of the rotation matrix
through an angle θ , namely the invertible 2 × 2 matrix

R(θ) =
(

cos θ −sin θ

sin θ cos θ

)
. (14.3)
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Note that the rotation matrix corresponding to a zero rotation angle is the iden-
tity matrix, which we denote I . We will need to be aware of the additive prop-
erty of rotation matrices, namely that the rotation matrices through angles θ1,
θ2 satisfy the following matrix multiplication relations

R(θ1)R(θ2) = R(θ1 + θ2) = R(θ2)R(θ1). (14.4)

The reader is invited to check these relations, using the sum and difference
formulas of elementary trigonometry. In the particular case when the sum of
the angles is zero that reduces to the following relations, saying that the inverse
of the rotation matrix through an angle θ is the rotation matrix through an
angle −θ

R(θ)R(−θ) = I = R(−θ)R(θ). (14.5)

The central concept of this chapter is the special type of planar mapping
known as a congruence, a planar mapping φ given by a formula of the follow-
ing form, where R is a rotation matrix, and T is a fixed vector

φ(Z) = Z R + T . (14.6)

We will refer to R and T as the rotational and translational parts of the con-
gruence. We can express φ in the coordinate form (14.1) by setting T = (u, v)

and observing that then{
x = X cos θ − Y sin θ + u
y = X sin θ + Y cos θ + v.

(14.7)

The congruence (14.6) is invertible since the equation z = φ(Z) can always
be solved for Z in terms of z. Doing this explicitly we see that the inverse is
another congruence

φ−1(z) = z R−1 − T R−1.

The inverse congruence can likewise be expressed in the coordinate form (14.1){
X = (x − u) cos θ + (y − v) sin θ

Y = −(x − u) sin θ + (y − v) cos θ.
(14.8)

The next two examples represent special cases of general congruences,
namely translations and rotations.

Example 14.1 A translation through a fixed vector T is the planar mapping φ

given by φ(Z) = Z + T . Thus translations are the special case of congruences
with rotation matrix the identity. One thinks of a translation as a ‘sliding’ of the
whole plane in the direction T . (Figure 14.2 illustrates the effect of a translation
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Fig. 14.2. Translation of the plane

on several points.) To write translations and their inverses in the coordinate
forms, set Z = (X, Y ), T = (u, v) to obtain the formulas

x = X + u, y = Y + v; X = x − u, Y = y − v.

Example 14.2 By a rotation (about the origin) through an angle θ we mean
the planar mapping φ defined by φ(Z) = Z R with R a rotation matrix. Thus
rotations are the special case of congruences in which the translational part T
is zero. It is worth pointing out that they appear in linear algebra as examples
of linear mappings. In coordinate terms, rotations and their inverses can be
written in the shape{

x = X cos θ − Y sin θ

y = X sin θ + Y cos θ.

{
X = x cos θ + y sin θ

Y = −x sin θ + y cos θ.

To make the abstract idea more concrete, here are some examples of rota-
tions (through special angles) which we will have occasion to use later.

Example 14.3 Rotation about the origin through a right angle, and its inverse
are the maps defined by

x = −Y, y = X; X = y, Y = −x .

Likewise, rotation about the origin through two right angles, and its inverse are
the maps

x = −X, y = −Y ; X = −x, Y = −y.

Finally, rotation about the origin through π/4, and its inverse are the mappings

x = X − Y√
2

, y = X + Y√
2

; X = x + y√
2

, Y = −x + y√
2

.
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Fig. 14.3. Rotation about the origin

Here is an example of a general congruence which is neither a translation
nor a rotation. We first met this example in Chapter 5 when defining the concept
of ‘centre’.

Example 14.4 Central reflexion in the point (u, v) is the planar map defined by
x = 2u− X , y = 2v−Y . Central reflexion is thus a congruence with rotational
angle θ = π , and translation through (2u, 2v). Of course when (u, v) is the
zero vector, central reflexion is a pure rotation.

An important aspect of congruences is that they form a ‘group’ in the sense
of abstract algebra. It is only the terminology we require, not the theory.

Theorem 14.1 The congruences form a group, in the following sense. The
identity mapping is a congruence, the compositie of two congruences is a con-
gruence, and the inverse of a congruence is a congruence.

Proof The identity map of the plane is the special case of the general congru-
ence (14.6) obtained by taking the rotation angle to be zero, and the translation
vector to be the zero vector. By calculation, the composite of two congruences
φ1(Z) = Z R1 + T1, φ2(Z) = Z R2 + T2 is the congruence φ(Z) = Z R + T
where R = R2 R1 and T = T2 R1 + T1. And, as we observed above, the inverse
of a congruence is another congruence.

Having established some algebraic properties of congruences we need to
say something about their metric properties. A key property of a rotation ρ
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about the origin is that it leaves scalar products invariant, in the following
sense.

Lemma 14.2 Let ρ be a rotation. Then for any vectors Z, W we have the
relation

ρ(Z) • ρ(W ) = Z • W. (14.9)

Proof The rotation ρ is defined by a formula ρ(Z) = Z R with R a rotation
matrix. Write Z = (x, y), W = (u, v). Then, writing c = cos θ , s = sin θ

for concision of expression, we have the following relations, and a one-line
calculation verifies (14.9)

ρ(Z) = (xc − ys, xs + yc), ρ(W ) = (uc − vs, us + vc).

Example 14.5 An immediate consequence is that rotations preserve distance,
in the sense that for any vector Z we have

|ρ(Z)| = |Z |. (14.10)

That follows immdediately from the calculation below on taking positive
square roots

|ρ(Z)|2 = ρ(Z) • ρ(Z) = Z • Z = |Z |2.
That leads us to an important general property of congruences. An invertible

planar mapping φ is an isometry when it preserves distance, in the sense that
for any points Z , Z ′ we have

|φ(Z) − φ(Z ′)| = |Z − Z ′|.

Example 14.6 Any congruence φ is an isometry. To this end write φ(Z) =
ρ(Z) + T with ρ a rotation, and T a fixed vector. Then, using the facts that
rotations are linear and preserve distance, we have

|φ(Z) − φ(Z ′)| = |ρ(Z) − ρ(Z ′)| = |ρ(Z − Z ′)| = |Z − Z ′|.

14.2 Congruent Lines

The next step is to be clear about the effect of congruences on lines. Two linear
functions L , M are congruent when there exists a congruence φ and a non-zero
constant µ for which M = µ(L ◦ φ). More explicitly, write φ(X, Y ) = (x, y)
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so that

M(X, Y ) = µL(x, y) = µL(φ(X, Y )). (14.11)

The reader is left to verify that congruence is an equivalence relation on linear
functions. (Exercise 14.2.1.) The proof is a consequence of the fact that the
congruences form a group. Moreover, a linear function L is congruent to any
constant multiple of L , so the concept of congruence is well defined (and an
equivalence relation) on lines. To make the definition more concrete, write
L = ax + by + c. Then, substituting the expressions for x , y in the general
congruence (14.7) we see that we can write M = AX + BY + C where


A = µ(a cos θ + b sin θ)

B = µ(−a sin θ + b cos θ)

C = µ(au + bv + c).
(14.12)

Here is an example which takes advantage of these explicit formulas to
show that up to congruence, all lines are the same.

Example 14.7 Any two lines L , M are congruent. By transitivity of the re-
lation, it suffices to show that the line L defined by x = 0 is congruent to
any given line M . Taking a = 1, b = 0, c = 0 in (14.12) we see that
M = AX + BY + C where

A = µ cos θ, B = −µ sin θ, C = µu.

Given A, B, C (with at least one of A, B non-zero) choose µ > 0 with µ2 =
A2 + B2, and then observe that these relations are satisfied for a unique angle
θ with 0 ≤ θ < 2π , and a unique constant u.

One consequence of (14.11) is that the congruence φ maps the zero set of
M bijectively to the zero set of L . The next example uses this observation to
clarify the effect of a congruence on pencils of lines.

Example 14.8 Let φ be a congruence mapping the lines L , M to the lines
L ′, M ′. Then a point P is an intersection of L , M if and only if its image P ′

under φ is an intersection of L ′, M ′. Thus L , M intersect if and only if L ′, M ′

intersect: likewise L , M are parallel if and only if L ′, M ′ are parallel. More
generally, φ maps the pencil of lines through a point P to the pencil of lines
through the image P ′; and any parallel pencil of lines to another parallel pencil.

Example 14.9 Congruences preserve midpoints of line segments. Let p, q,
r be collinear points mapped by a congruence φ to collinear points p′, q ′, r ′.
Then r is the midpoint of the line segment p, q if and only if r ′ is the midpoint
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of the line segment p′, q ′. We have only to observe that r is equidistant from
p, q if and only if r ′ is equidistant from p′, q ′.

Example 14.10 Congruences preserve angles between two lines. Let M =
AX + BY + C , M ′ = A′ X + B ′Y + C ′ be lines, obtained from the lines
L = ax + by + c, L ′ = a′x + b′y + c′ by a congruence φ. Let ρ be
the rotational part of φ. Then the formulas (14.12) show that the vectors V =
(a, b), V ′ = (a′, b′) are expressed in terms of the vectors W = (A, B),
W ′ = (A′, B ′) by the relations V = µρ(W ), V ′ = µρ(W ′) for some non-zero
constant µ. The angles θ between the lines L , L ′ are then determined by

± cos θ = V • V ′

|V ||V ′| = ρ(W ) • ρ(W ′)
|ρ(W )||ρ(W ′)| = W • W ′

|W ||W ′| .

The last equality uses the relations (14.9), (14.10). Thus the angles θ are pre-
cisely the angles between the lines M , M ′. In particular, congruences preserve
perpendicularity between two lines.

Exercises

14.2.1 Show that the relation of congruence is an equivalence relation on
lines.

14.2.2 Let P be a point, let L be a line, and let φ be a congruence mapping
P to a point P ′ and L to a line L ′. Show that the distance from P to
L equals the distance from P ′ to L ′.

14.3 Congruent Conics

The definition of ‘congruence’ in the previous section can be extended from
lines to conics. Two quadratic functions Q, R are congruent when there exists
a congruence φ, and a non-zero constant µ, for which R = µ(Q ◦ φ). More
concretely, writing φ(X, Y ) = (x, y) the relation is that

R(X, Y ) = µQ(x, y) = µQ(φ(X, Y )). (14.13)

We may on occasion use a finer terminology, for instance that Q, R are trans-
lationally congruent when φ is a translation, or rotationally congruent when
φ is a rotation. In fact we met translational congruence in Chapter 5 when
discussing centres, though the idea of rotational congruence is new.

Example 14.11 Consider rotation about the origin through an angle θ defined
by tan θ = −4/3: thus sin θ = −4/5, cos θ = 3/5, and the rotation is defined
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by the formulas

x = 3X + 4Y

5
, y = −4X + 3Y

5
.

The result of this rotation on the conic Q below is obtained by substituting for
x , y in Q, yielding the rotationally congruent conic R

Q(x, y) = 11x2 + 24xy + 4y2 − 5, R(X, Y ) = −5(X2 − 4Y 2 + 1).

The reader is left to verify that congruence is an equivalence relation on
quadratic functions. (Exercise 14.3.1.) The proof is a direct consequence of
the fact that the congruences form a group. Moreover, a quadratic function Q
is congruent to any constant multiple of Q, so the concept of congruence is
well defined (and an equivalence relation) on conics. Congruence is the formal
mathematical concept expressing the idea illustrated by Figure 14.1.

Example 14.12 Congruences preserve zero sets of conics, in the following
sense. Let Q, R be congruent conics, so there exists a congruence φ and a non-
zero constant µ for which (14.7) holds. Then the point (x, y) lies in the zero set
of R if and only if the point φ(x, y) lies in the zero set of Q. Put another way,
the congruence φ maps the zero set of R bijectively to that of Q. In particular
the zero set of Q is infinite, a point, or empty if and only if the zero set of R is
infinite, a point, or empty. For instance, a real ellipse cannot be congruent to a
virtual ellipse, since the zero set of the latter is empty, whilst that of the former
is not.

The next example shows that congruences preserve midpoint loci of conics,
and hence also their axes and their vertices.

Example 14.13 Consider a conic Q and a parallel pencil of lines M . A con-
gruence φ will map Q to a congruent conic Q′, and the lines M to a parallel
pencil of lines M ′. By Example 14.9 the point P is the midpoint of the chord
M if and only if its image P ′ under φ is the midpoint of the chord M ′. Thus
a line L is the midpoint locus for Q (in the direction of the lines M) if and
only if the congruent line L ′ is the midpoint locus for Q′ (in the direction of
the lines M ′). (Figure 14.4.) In fact more is true. By Example 14.10 the lines
L , M are perpendicular if and only if L ′, M ′ are perpendicular. It follows that
L is an axis for Q if and only if L ′ is an axis for Q′.

The principal objective of the next chapter will be to classify conics up to
the relation of congruence. To any conic Q we will associate a ‘normal form’,
a congruent conic given by a simple formula. Quite apart from its intrinsic
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Fig. 14.4. Invariance of midpoint loci

interest, the classification has an important practical merit: the geometry of
normal forms can be established via straightforward explicit calculations, and
we can then deduce the geometry of arbitrary conics.

Exercises

14.3.1 Show that the relation of congruence is an equivalence relation on
conics.

14.3.2 Show that congruences preserve the property of ‘reducibility’ in the
sense that if Q, Q′ are congruent conics, then Q is reducible if and
only if Q′ is reducible.

14.3.3 Show that congruences preserve centres, in the following sense. Let
P be a point, let Q be a conic, and let φ be a congruence, taking P to
a point P ′, and Q to a conic Q′. Then P is a centre for Q if and only
if P ′ is a centre for Q′.

14.3.4 Show that congruences preserve tangency in the following sense. Let
L be a line intersecting a conic Q at a point P , and let φ be a congru-
ence taking the line L to a L ′, the conic Q to Q′ and the point P to
P ′. Then L is the tangent to Q at P if and only if L ′ is the tangent to
Q′ at P ′.

14.4 The Invariance Theorem

In the next chapter we will classify conics, up to the relation of congruence.
That raises natural questions. For instance, do the resulting classes overlap?
As we saw above, the zero set provides a crude way of distinguishing some
classes from others. However, in this respect the invariants of Section 4.3 are
much better tools, the key fact being the Invariance Theorem below. To state the
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result we need a definition. Two quadratic functions Q, R are strictly congruent
when they satisfy the relation (14.13) with µ = 1. In more detail, there exists
a congruence φ for which R = Q ◦ φ: thus, if φ(X, Y ) = (x, y) then

R(X, Y ) = Q(x, y) = Q(φ(X, Y )). (14.14)

Strictly congruent quadratic functions are automatically congruent. However
the converse fails. Two quadratic functions may define the same conic, but fail
to be strictly congruent. (Exercise 14.4.1.)

Theorem 14.3 Let Q, Q′ be strictly congruent quadratic functions with in-
variants τ , δ, � and τ ′, δ′, �′. Then τ = τ ′, δ = δ′, � = �′. (The Invariance
Theorem.)

We will postpone the proof of the Invariance Theorem to Chapter 17. For
the moment it is the statement which is important to us, rather than the proof.

Example 14.14 The conics Q, Q′ below were obtained from each other in
Example 14.11 by applying a rotation

Q(x, y) = 11x2 + 24xy + 4y2 − 5, Q′(X, Y ) = −5(X2 − 4Y 2 + 1).

A moments calculation verifies that the invariants take the following values,
confirming the Invariance Theorem for this example

τ = τ ′ = 15, δ = δ′ = −100, � = �′ = 500.

Example 14.15 Strictly congruent quadratic functions Q, Q′ have the same
eigenvalues. The eigenvalues are the roots of the characteristic equations. By
(7.5) these can be written in the form below, where τ , δ are the invariants for
Q, and τ ′, δ′ those for Q′. By the Invariance Theorem we have τ ′ = τ , δ′ = δ,
so the characteristic equations, and hence the eigenvalues, are equal

λ2 − τλ + δ = 0, λ2 − τ ′λ + δ′ = 0.

It is the following consequence of the Invariance Theorem which we use
in practice. Let Q, Q′ be quadratic functions, with invariants τ , δ, � and τ ′,
δ′, �′. Suppose that the conics they define are congruent, so there exists a
congruence φ, and a non-zero scalar µ for which

Q′(X, Y ) = µQ(φ(X, Y )) = µQ′′(X, Y ).
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By the Invariance Theorem, Q, Q′′ have the same invariants. However, Q′ is
obtained from Q′′ on multiplying by µ. Thus we obtain a general principle,
that the invariants of congruent conics Q, Q′ satisfy relations of the form

τ ′ = µτ, δ′ = µ2δ, �′ = µ3�. (14.15)

These relations allow us to draw a number of useful conclusions. The dis-
criminants �, �′ of congruent conics Q, Q′ are both zero, or both non-zero.
Thus Q is degenerate if and only if Q′ is degenerate. Moreover, the delta in-
variants δ, δ′ are both zero, or both non-zero; indeed, since µ2 is positive,
they even have the same signs. It follows from these comments that the con-
cepts of ellipse, parabola, and hyperbola defined for non-degenerate conics by
Table 4.1 are all invariant under congruence, as are the concepts of real, paral-
lel, and virtual line-pairs defined for degenerate conics in Table 6.1.

Exercises

14.4.1 Let Q, Q′ be quadratic functions with Q′ = µQ for some constant
µ �= 0, 1. Show that Q, Q′ cannot be congruent.

14.4.2 Let φ be a congruence taking the ellipse Q to another ellipse Q′.
Show that φ takes the major (respectively minor) axis of Q to the
major (respectively minor) axis of Q′.
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Classifying Conics

The objective of this chapter is to obtain a complete list of conics (up to the
relation of congruence) and explore the consequences of that listing. We start
with an arbitrary conic Q and reduce the number of terms in it till we reach
a ‘normal form’, a congruent conic given by a particularly simple formula.
Section 15.1 is a key step in this process, rotating the axes till they are parallel
to the coordinate axes. There are three main cases: Q has a unique centre,
a line of centres, or no centre. In each case we will derive a list of ‘normal
forms’. The net result is a listing into nine ‘classes’, each of which (with one
exception) involves moduli. The question of distinguishing these classes, and
ensuring there are no redundancies amongst the normal forms, provides the
material for the next chapter.

The classification yields significant gains. The simplicity of the ‘normal
form’ allows us to elucidate its geometry with relative ease. However, the rela-
tion of ‘congruence’ preserves all the desirable geometric features of a conic.
Thus in principle we can access the geometry of any conic, without recourse to
complex calculations. The first gain is the fact that any parabola, real ellipse, or
hyperbola is constructible, so the interesting metric geometry of constructible
conics can be extended to the three most important conic classes. Another ge-
ometric gain is that we can relate eigenvalues to axis lengths, leading to a
practical technique for calculating axis lengths directly from equations.

15.1 Rotating the Axes

Consider the general conic (�) below. The initial step in listing conics up to
congruence is based on an observation made in Example 7.9, namely that (�)

has an axis parallel to a coordinate axis if and only if the coefficient 2h of the
cross term xy is zero. That is the motivation for our first result, that by rotation

149
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we can force the axes of a conic to be parallel to the coordinate axes

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

Lemma 15.1 Any conic (�) is rotationally congruent to one in which the co-
efficient of the cross term xy is zero.

Proof Consider the effect on (�) of a rotation through an angle θ , given by the
formulas {

x = X cos θ − Y sin θ

y = X sin θ + Y cos θ.

Substituting these expressions for x , y in Q, we obtain another conic Q′. Direct
calculation (using the double angle formulas of school trigonometry) shows
that the coefficient 2h′ of xy in Q′ is given by

h′ = 1

2
(b − a) sin 2θ + h cos 2θ.

We seek an angle θ for which h′ = 0. We can assume h �= 0, else there is
nothing to prove. Thus when a = b the condition h′ = 0 reduces to cos 2θ = 0,
and we can take θ = π/4: otherwise, a suitable angle θ is determined by

tan 2θ = 2h

a − b
.

To write down the rotation explicitly in an example requires the values of
sin θ and cos θ which are easily deduced from tan θ . However, the proof pro-
duces a value of tan 2θ . The technique is to use the trigonometric identity

tan 2θ = 2 tan θ

1 − tan2 θ
.

That produces a quadratic in T = tan θ which can be solved explicitly in a
given example, namely hT 2 + (a − b)T − h = 0. It has a positive discrimi-
nant, so there are two distinct real roots. The mechanics of the calculation are
illustrated in the next example.

Example 15.1 For the conic Q below the required angle θ is determined by
the relation tan 2θ = −24/7

Q(x, y) = 41x2 − 24xy + 34y2 − 90x + 5y + 25.

Setting T = tan θ we obtain the quadratic 12T 2 − 7T − 12 = 0 with roots
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T = 4/3, T = −3/4. When tan θ = 4/3 we have sin θ = 4/5, cos θ = 3/5
and the corresponding rotation is

x = 3X − 4Y

5
, y = −4X + 3Y

5
.

Substituting for x , y in Q(x, y) we obtain the following ‘rotated’ form, in
which the cross term is absent

Q′(X, Y ) = X2 + 2Y 2 − 2X + 3Y + 1.

Exercises

15.1.1 In each of the following cases find a rotation forcing the cross term in
Q to vanish:

(i) Q = 2x2 − 3xy + 2y2 − 1,
(ii) Q = 6x2 + 24xy − y2,
(iii) Q = 11x2 + 4xy + 14y2 − 5.

15.1.2 In each of the following cases find a rotation forcing the cross term in
Q to vanish:

(i) Q = 9x2 + 24xy + 2y2 − 6x + 20y + 41,
(ii) Q = 8x2 + 12xy − 8y2 + 12x + 4y + 3,
(iii) Q = 9x2 − 4xy + 6y2 − 10x − 7.

15.2 Listing Normal Forms

The net result of the previous section is that any conic is congruent to one in
which the cross term is absent, so having the shape

Ax2 + By2 + 2Gx + 2Fy + C (��)

with at least one of A, B non-zero. The geometry of this conic depends cru-
cially on whether it has a unique centre, a line of centres, or no centre. It will
help to recall at this juncture that by Lemma 5.3 the centres are the solutions
of the following equations

Ax + G = 0, By + F = 0. (15.1)

Theorem 15.2 Any non-degenerate conic (�) with a unique centre is congru-
ent to one of the normal forms below, where a, b are positive constants

x2

a2
+ y2

b2
= 1,

x2

a2
+ y2

b2
= −1,

x2

a2
− y2

b2
= 1.
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Proof Translating the centre of (�) to the origin, and then rotating to get rid of
the cross term we obtain a conic of the following form, for some constant K

Ax2 + By2 − K .

Note first that A, B are both non-zero, else the conic fails to have a unique
centre. We can suppose A is positive (multiplying through by −1 if necessary)
allowing us to define a constant a by the relation Aa2 = 1. Moreover, K is
non-zero, since the discriminant is −ABK and the conic is assumed to be
non-degenerate. Further, we can suppose K = 1 when K is positive (dividing
through by K ) or K = −1 when K is negative (dividing through by −K ).
When B is positive, define a constant b > 0 by Bb2 = 1. That gives us the
first two normal forms. When B is negative, define b by Bb2 = −1. In the case
K = 1 that produces the third normal form. The case K = −1 is congruent to
the third normal form: just multiply through by −1 and rotate through a right
angle (changing the variables x , y to −y, x) to get back to the case K = 1.

The first two normal forms of Theorem 15.2 represent the classes of real
and virtual ellipses, whilst the third represents the class of hyperbolas. There
is detail here worth spelling out.

Lemma 15.3 Any real circle, virtual circle, or rectangular hyperbola is con-
gruent to one of the following normal forms, where a is a positive constant

x2 + y2 = a2, x2 + y2 = −a2, x2 − y2 = a2.

Proof The real circle, virtual circle, and rectangular hyperbola types are all
invariant under congruence. Moreover, they are all non-degenerate types with a
unique centre, so congruent to one of the normal forms listed in Theorem 15.2.
It remains to observe that in each case the normal form is of the given type if
and only if a = b.

Lemma 15.4 Any non-circular real or virtual ellipse is congruent to one of
the following normal forms

x2

a2
+ y2

b2
= 1,

x2

a2
+ y2

b2
= −1, (0 < b < a).

Proof Both types in the statement are invariant under congruence, and con-
gruent to the first two families of normal forms in Theorem 15.2 with distinct
moduli a, b. Further, we can assume 0 < b < a: indeed we need only rotate
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the conic through a right angle to obtain a normal form in which the the roles
of a, b are switched.

Of course, the first normal forms are the standard real ellipses first intro-
duced in Section 4.1. It would be appropriate to dub the second normal forms
the standard virtual ellipses. The reader is warned that the arguments for el-
lipses do not apply to hyperbolas. There is no reason to suppose that switching
the moduli a, b in a normal form for a hyperbola will produce a congruent
conic. In fact, as we will see in the next chapter, that is not the case.

Theorem 15.5 Any parabola (�) is congruent to a standard parabola
y2 = 4ax with a > 0.

Proof In Example 5.6 we observed that parabolas are automatically non-
central conics. The condition for (��) to be non-central is that the equations
(15.1) have no solution. That is the case when either A �= 0, B = 0, F �= 0 or
A = 0, B �= 0, G �= 0. The former possibility reduces to the latter on replacing
x , y by −y, x (a rotation through a right angle), so we need only consider the
latter. Dividing through by B we can suppose that B = 1. Translation through
(0, −F) then forces the coefficient of y to vanish, resulting in a conic of the
form y2 + 2Gx + K for some new constant K ; and then a translation parallel
to the x-axis forces that constant to vanish, producing a form y2 + 2Gx . It is
no restriction to suppose that G < 0: otherwise, we replace x , y by −x , −y
(a rotation through two right angles) to change the sign of G. Finally, setting
G = −2a with a > 0 we obtain the normal form of the statement.

The above results yield a complete classification of non-degenerate conics
up to congruence. It is time to turn our attention to the degenerate cases. First,
we deal with degenerate conics having a unique centre.

Theorem 15.6 Any degenerate conic (�) with a unique centre is congruent to
a real line-pair y2 = c2x2 or a virtual line-pair y2 = −c2x2 with 0 < c ≤ 1.

Proof The initial steps are identical to those in the proof of Theorem 15.2. By
translation and rotation we can assume the conic has the following form, for
some constant K

Ax2 + By2 − K .

Then A, B are non-zero, else the conic fails to have a unique centre. The
discriminant is ABK , so the condition for the conic to be degenerate is that
K = 0. Dividing the equation through by B we obtain an equation Cx2 + y2
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with C non-zero. When C < 0 we set C = −c2, and when C > 0 we set
C = c2, to obtain the normal forms of the statement. If c ≥ 1 we apply a
rotation through a right angle (switching the roles of the variables) to obtain a
normal form with 0 < c ≤ 1.

To complete the classification of conics it remains to discuss conics having
a line of centres.

Theorem 15.7 Any conic (�) having a line of centres is congruent to the real
parallel lines y2 = k2, the virtual parallel lines y2 = −k2, or the repeated
line y2 = 0, where k is a positive constant.

Proof In view of the equations (15.1) we have a line of centres if and only if
A = 0, B �= 0, G = 0, or A �= 0, B = 0, F = 0. The latter possibility reduces
to the former on replacing x , y by −y, x (a rotation through a right angle) so
we need only consider the former. Translating one of the centres to the origin
we can assume the conic has the form Bx2 + K for some constant K . Dividing
through by B we can suppose B = 1. When K < 0 we set K = −k2 with
k > 0 to obtain a real line-pair: when K = 0 we obtain the repeated line; and
when K > 0 we set K = k2 with k > 0, to obtain a virtual line-pair.

Exercises

15.2.1 Show that Q = 9x2 + 24xy + 2y2 − 6x + 20y + 41 has a unique
centre, and find the equation of the conic obtained by translating the
centre to the origin. Find an explicit rotation removing the cross term,
and hence determine a normal form for Q.

15.2.2 Let Q be a degenerate conic. Show that the trace invariant τ vanishes
if and only if Q is a real line-pair with perpendicular components.

15.2.3 Show that any conic Q = αL2 + βM2, with L , M lines and α, β

constants, is a (real or virtual) line-pair, a (real or virtual) parallel
line-pair, or a repeated line.

15.3 Some Consequences

The principal gain in listing conics is that the geometry of an arbitrary conic is
reduced to that of a normal form. And the simplicity of normal forms means
that calculations with them are much easier to carry out. It is of course the real
ellipses, parabolas, and hyperbolas which are of greatest interest in this respect.
Our first result is that congruences preserve the notion of ‘constructibility’.



15.4 Eigenvalues and Axes 155

Lemma 15.8 Let Q be a constructible conic with eccentricity e. Then any
conic Q′ congruent to Q is also constructible, with the same eccentricity e.

Proof The assumption is that Q arises from the construction comprising a fo-
cus F , a directrix D, and eccentricity e. Let φ be the congruence taking Q to
Q′. Then φ maps F to a point F ′, and D to a line D′ not passing through F ′.
Now let P be a point on Q mapped by φ to a point P ′ on Q′. Since congru-
ences preserve distance, we have P F = P ′F ′, P D = P ′ D′. Then (8.1) yields
the relation P ′F ′2 = e2 P ′ D′2, ensuring that Q′ arises from the construction
comprising the focus F ′, the directrix D′, and the same eccentricity e.

The main consequence of this result is that any real ellipse, parabola, or hy-
perbola is a constructible conic. By Theorem 15.2 such conics are congruent
to the standard conics, and by the results of Chapter 8 all the standard con-
ics are constructible. Indeed the argument establishes more: any parabola has
a unique construction, whilst any real ellipse or hyperbola has precisely two
constructions.

Example 15.2 In Lemma 8.4 we showed that any standard real ellipse has just
two constructions, each giving rise to a focus on the major axis, and a directrix
perpendicular to that axis. Since the concepts of focus, directrix, and major
axis are all invariant under congruences, the same is true of any real ellipse.

In principle any of the focal properties established for standard conics, also
hold for arbitrary conics. For instance all three conic classes share the reflec-
tive properties established for the standard conics. Likewise, all ellipses have
the property that the sum of the distances from a general point to the foci is
constant, and equal to the length of the major axis.

Exercises

15.3.1 Verify that the zero set of any normal form is infinite, a single point,
or empty and deduce that the zero set of any conic is infinite, a single
point, or empty.

15.3.2 Two congruent parabolas Q, Q′ have a common focus. Show that
their common chord passes through the focus, and is a bisector of the
axes.

15.4 Eigenvalues and Axes

Eigenvalues and eigenvectors arose naturally in Chapter 7 when studying axes
of conics. Recall that the eigenvectors give the directions of the axes. However,
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the significance of the eigenvalues is less clear. The purpose of this section is
to clarify the situation by relating the eigenvalues to axis lengths. Quite apart
from the conceptual gain, that has the practical advantage of enabling us to
calculate axis lengths directly from an equation, without having to determine
a normal form.

Let us start by spelling out the effects of a congruence on eigenvalues.
According to Example 14.15 strictly congruent quadratic functions have the
same eigenvalues. However, eigenvalues are not invariant under general con-
gruences. Let Q be a quadratic function Q with invariants τ , δ, 	. As we
pointed out in Chapter 7, multiplication of Q by a constant k multiplies any
eigenvalue by k. The general situation is this. Any congruent quadratic func-
tion Q′ has the form Q′ = k Q′′ with Q′′ strictly congruent to Q. Now Q, Q′′

have the same invariants (by the Invariance Theorem) so those of Q′ are kτ ,
kδ, k	. Moreover, any eigenvalue λ for Q corresponds to a unique eigenvalue
kλ for Q′.

Against this background, consider conics Q having a unique centre. (Thus
their delta invariants and eigenvalues are non-zero.) The classification pro-
duces a normal form with centre the origin, and constant term 	/δ.
(Lemma 5.5.) Of course, the constant term changes under a congruence. Now
let λ be an eigenvalue of Q. In view of the above discussion the expression
	/λδ is the same for the normal form, provided we choose its eigenvalue cor-
responding to λ. For real ellipses that has the following consequence.

Lemma 15.9 Let λ be an eigenvalue of a real ellipse Q. Then the semilength
s of the corresponding axis is given by

s2 =
∣∣∣∣ 	

δλ

∣∣∣∣ . (15.2)

Proof In view of the above remarks both sides of the displayed formula are
invariant under congruences, so it suffices to establish the formula for the
standard real ellipse with moduli a, b satisfying 0 < b < a. For that form
the semilengths of the major and minor axes are s = a, b. Moreover setting
A = 1/a2, B = 1/b2 we find that the invariants are δ = AB, 	 = −AB and
the eigenvalues are λ = A, B. Thus the RHS of the formula has the value a2

for λ = A, and b2 for λ = B, establishing the result.

This result confirms an earlier statement, namely that the major axis of an
ellipse corresponds to the eigenvalue of smaller absolute value, whilst the mi-
nor axis corresponds to the eigenvalue of greater absolute value.
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Example 15.3 The invariants of the ellipse Q defined below are readily
checked to be τ = 6, δ = 8, 	 = −1024

Q = 3x2 + 2xy + 3y2 − 6x + 14y − 101.

The characteristic equation is λ2 −6λ+8 = 0 producing the positive eigenval-
ues λ = 2, 4. According to (15.2), the semilengths s1, s2 of the axes are given
by s2

1 = 32, s2
2 = 64 yielding s1 = 4

√
2, s2 = 8.

Likewise, we can apply these ideas to hyperbolas to obtain two useful con-
sequences.

Lemma 15.10 The transverse (resp. conjugate) axis of a hyperbola Q corre-
sponds to the eigenvalue λ having the opposite (resp. same) sign as 	/δ, and
has semilength s given by (15.2).

Proof The transverse and conjugate axes are preserved by congruences, so
it suffices to check the statements for the standard hyperbolas with moduli
a, b. We keep to the notation of the previous proof. The eigenvalues are then
λ = A, λ = −B with the positive (resp. negative) eigenvalue corresponding
to the transverse (resp. conjugate) axis. The first statement then follows from
the fact that 	/λδ is negative (resp. negative) for the positive (resp. negative)
eigenvalue. The formula for the semilength follows exactly as in the ellipse
case.

Example 15.4 The conic Q = 5x2 − 24xy − 5y2 + 14x + 8y − 16 has
invariants τ = 0, δ = −169, 	 = 2197 so is a rectangular hyperbola with
	/δ = −13. The characteristic equation is λ2 − 169 = 0 so the eigenvalues
are λ = 13, −13. In view of the above result the transverse axis corresponds to
the positive eigenvalue λ = 13. Moreover, according to (15.2) its semilength
s is given by s2 = 1, so s = 1. The reader is left to verify that the transverse
axis is 2x + 3y − 2 = 0, and that the conjugate axis is 3x − 2y + 1 = 0.

Exercises

15.4.1 In each of the following cases find the major and minor axes of the
given ellipse and their semilengths:

(i) 5x2 − 6xy + 5y2 + 18x − 14y + 9 = 0,

(ii) 13x2 − 32xy + 37y2 − 14x − 34y − 35 = 0,

(iii) 3x2 + 2xy + 3y2 + 14x + 20y − 183 = 0.
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15.4.2 In each of the following cases find the transverse and conjugate axes
of the given hyperbola, and the semilength of the transverse axis:

(i) 3x2 − 10xy + 3y2 + 16x − 16y + 8 = 0,

(ii) x2 − 6xy − 7y2 − 16x − 48y − 88 = 0,

(iii) 4x2 − 10xy + 4y2 + 6x − 12y − 9 = 0.
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Distinguishing Conics

The net result of the classification in Chapter 15 is a list of nine basic classes
of conics, all of which (with the sole exception of the repeated line) involve
moduli. The listing raises two natural questions, providing the material for this
chapter. The first is whether any of the lists overlap: can a conic be congruent
to normal forms in two different classes? As we shall see, that cannot happen,
but it requires proof. Together with the zero sets, the invariants enable us to
distinguish all nine classes. The net result is a simple, efficient recognition
technique. Section 16.2 is in the nature of an extended example, illustrating the
application of these ideas to the classical Greek construction of conics, as plane
sections of a fixed cone. The second question is whether there is duplication
within a class: can a conic be congruent to two normal forms within the same
class? Again, that cannot happen, but it does require proof.

16.1 Distinguishing Classes

The normal forms for the nine main conic classes, their associated invariants
and the cardinal of their zero sets, are listed in Table 16.1. Of the four non-
degenerate classes, just one (the hyperbola) has δ < 0, just one (the parabola)
has δ = 0, whilst two (the real and virtual ellipses) have δ > 0. However,
by definition, the real and virtual ellipses are distinguished by their zero sets.
Thus no two of the four classes can be congruent. Of the degenerate classes,
just one (the real line-pair) has δ < 0, just one (the virtual line-pair) has
δ > 0, whilst the remaining three all have δ = 0. The class of virtual par-
allel lines is distinguished from the other two by the fact that the zero set is
empty. Finally, a repeated line cannot be congruent to real parallel lines, since
in the former case every point is singular, and in the latter case no point is
singular.
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Table 16.1. Invariants for conic classes

class � δ zero set

real ellipses � �= 0 δ > 0 infinite
virtual ellipses � �= 0 δ > 0 empty
hyperbolas � �= 0 δ < 0 infinite
parabolas � �= 0 δ = 0 infinite

real line-pairs � = 0 δ < 0 infinite
virtual line-pairs � = 0 δ > 0 point
real parallel lines � = 0 δ = 0 infinite
virtual parallel lines � = 0 δ = 0 empty
repeated lines � = 0 δ = 0 infinite

We can now predict the class of a conic largely by calculating its invari-
ants. The next two examples illustrate situations where a knowledge of the
invariants alone is not sufficient to determine the class of a conic; however,
even a minimal knowledge of the zero set is sufficient to resolve the question.

Example 16.1 For Q(x, y) = x2 − 2xy + 5y2 + 2x − 10y + 1 the invariants
are τ = 6, δ = 4, � = 24, so by Table 16.1 the conic is a real or virtual
ellipse. In fact it is a real ellipse because its zero set contains a point. One way
of seeing that is to intersect it with the line y = 0: that gives x2 + 2x + 1 = 0,
i.e. (x + 1)2 = 0, yielding x = −1. Thus (−1, 0) is a point on Q.

Example 16.2 For the family of conics Q(x, y) = y2 − αx2 − 2x we have
τ = 1 − α, δ = −α, � = 1. Note that Q always passes through the origin, so
cannot have an empty zero set, and Table 16.1 determines the class. Indeed Q
is a real ellipse for α < 0, a parabola for α = 0, and a hyperbola for α > 0.
It is illuminating to see how Q changes as α varies. When α = −1 we have
a circle: in the range −1 < α < 0 we have a real ellipse, which becomes a
parabola when α = 0; and this changes into a hyperbola as α becomes positive,
the branches becoming ever closer as α → ∞.

Exercises

16.1.1 Calculate the invariants for the conic Q below. Show that Q is a
parabola if and only if α = 0, β �= 0, and is a repeated line if and
only if α = 0, β = 0, γ = 0

Q(x, y) = y2 − αx2 − 2βx − γ.
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z = 0

Γ

Fig. 16.1. Sections of the cone �

16.1.2 In each of the following cases, calculate the invariants of the conic
Qt , and hence determine its class:

(i) Qt (x, y) = 2y(x − 1) + 2t (x − y),
(ii) Qt (x, y) = x2 + t (t + 1)y2 + 2 − 2t xy + 2x ,
(iii) Qt (x, y) = t (x2 + y2) − (x − 1)2.

16.2 Conic Sections

This section is in the nature of an extended example, illustrating how invariants
can identify naturally appearing classes of conics. The ancient Greeks envis-
aged conics as plane sections of a fixed cone. In this section we will show that
(with the sole exception of the parallel line-pair) this produces all classes of
conics having a non-empty zero set. The cone in question is the set

� = {(x, y, z) ∈ R
3 : x2 + y2 = z2}.

We can visualize � by thinking in terms of its sections with a ‘horizontal’ plane
z = r , where r is any fixed real number. For r �= 0 the section is the circle
x2 + y2 = r2, z = r centred at the point (0, 0, r) on the z-axis, and having
radius |r |; and for r = 0 it comprises the origin. (Figure 16.1.)

Now consider the sections of � with ‘non-vertical’ planes having equation
z = αx + βy + γ . When we look at such a section from a distant point on
the z-axis we see a curve, which we can place in the (x, y)-plane. That curve
is obtained by eliminating z between the equations of the plane and the cone,
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Table 16.2. Conic sections

affine type � δ

real ellipses γ �= 0 α2 + β2 < 1
hyperbolas γ �= 0 α2 + β2 > 1
parabolas γ �= 0 α2 + β2 = 1

virtual line-pairs γ = 0 α2 + β2 < 1
real line-pairs γ = 0 α2 + β2 > 1
repeated lines γ = 0 α2 + β2 = 1

producing the conic S defined by

(α2 − 1)x2 + 2αβxy + (β2 − 1)y2 + 2αγ x + 2βγ y + γ 2.

We will list the possible classes as α, β, γ vary. The reader is left to check that

τ = α2 + β2 − 2, δ = 1 − α2 − β2, � = γ 2.

To determine the class in which S lies, note first that the zero set of S cannot
be empty: for instance, setting x = 0 yields a quadratic in y with discriminant
γ 2 ≥ 0, ensuring the existence of a zero. Thus S cannot lie in either of the two
conic classes with empty zero sets. The invariants determine the remaining
seven classes in Table 16.1 with one exception, namely δ = 0, � = 0. In
that case α2 + β2 = 1, γ = 0, so S is a binary quadratic with δ = 0, and
therefore a repeated line. The six possibilities are listed in Table 16.2. The
condition γ = 0 is that the plane z = αx + βy + γ passes through the origin.
It then lies outside the cone (virtual line-pair), or cuts the cone (real line-pair),
or intersects it along a line (repeated line).

16.3 Conics within a Class

That brings us to the question whether there are congruent normal forms within
any of the nine main conic classes. With one exception (repeated lines) all nine
classes have normal forms involving moduli, for instance a, b in the classes of
real and virtual ellipses. The objective is to show that in a given class congruent
normal forms have the same moduli. For some classes simple observations
suffice to achieve this objective. It is markedly easier to deal with the cases
when the zero set is infinite. The point is best made by looking first at the
non-degenerate classes.
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Example 16.3 A congruence between two constructible conics will leave the
distance between focus and vertex invariant. In particular, that is the case for
two congruent parabolas. For a normal form y2 = 4ax with modulus a that
distance is a. It follows that two normal forms are congruent if and only if the
moduli are equal.

Example 16.4 The same line of thought can be adopted when dealing with
real ellipses. Congruences leave major and minor axes invariant, hence also
the distances between vertices on those axes. In the case of a standard real
ellipse with moduli a, b satisfying 0 < b < a the distance between the major
vertices is 2a, whilst that between the minor vertices is 2b. Again, we can
conclude that two normal forms are congruent if and only if their moduli are
equal.

Example 16.5 For hyperbolas we need to be slightly more inventive. Consider
two standard hyperbolas with moduli a, b and a′, b′. Recall first that the ec-
centricity is invariant under congruences. The eccentricities e, e′ are defined
by the relations

a2e2 = a2 − b2, a′2e′2 = a′2 − b′2.

Suppose now that the two hyperbolas are congruent: then we know that e =
e′. However, congruences also leave invariant the distance between the two
vertices on the transverse axis. For the two standard hyperbolas those distances
are 2a, 2a′ so a = a′. It now follows from the displayed formulas that b2 = b′2

and hence b = b′.

However, the above arguments do not apply to virtual ellipses. We could go
back to first principles, but it is more productive to consider the invariants τ , δ,
�. Recall the general principle expressed by (14.2), namely that if Q, Q′ are
conics with invariants τ , δ, � and τ ′, δ′, �′ there is a non-zero constant κ for
which

τ ′ = κτ, δ′ = κ2δ, �′ = κ3�. (16.1)

Lemma 16.1 Let Q, R be congruent conics, defined by the formulas below,
where all the coefficients are non-zero and either p ≤ q, r ≤ s or p ≥ q,
r ≥ s: then p = r and q = s

Q(x, y) = px2 + qy2 + t, R(x, y) = r x2 + sy2 + t.
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Proof The invariants τ , δ, � for Q are p + q , pq, pqt , whilst those for R are
r + s, rs, rst . By (14.2) there is a non-zero scalar λ with

r + s = λ(p + q), rs = λ2 pq, rst = λ3 pqt.

The last two relations imply that λ = 1. Then, elimination of s from the first
two yields (p − r)(q − r) = 0, so either p = r (and hence q = s, as required)
or q = r (and hence p = s). In the latter case either pair of inequalities yields
p = q = r = s.

Example 16.6 Virtual ellipses have normal forms px2 + qy2 + t , where
p = 1/a2, q = 1/b2, t = 1 and 0 < b ≤ a. Then p ≤ q, and the above result
shows that the congruence type determines p, q, and hence the moduli a, b.
Exactly the same argument applies to real ellipses when we take t = −1.

That brings us to the question of normal forms for degenerate conics. Let
us start with a geometrically compelling example, namely real line-pairs. By
Example 14.10 the angles between the two component lines are invariant under
congruence. We use that fact in the next example, to deduce that congruent
normal forms have the same modulus.

Example 16.7 Consider a normal form y2 = c2x2 with 0 < c ≤ 1 for
a real line-pair obtained in Theorem 15.6. The component lines are cx − y,
cx + y. Using the relation (2.1) we see that the angles θ , φ between them are
determined by the relations cos θ = ρ(c), cos φ = −ρ(c) where

ρ(c) = c2 − 1

c2 + 1
.

By the above remarks, the angles between the component lines of a congruent
normal form y2 = d2x2 with 0 < d ≤ 1 are also θ , φ, so we have a relation
ρ(c) = ±ρ(d). In either case a short calculation, using the inequalities 0 <

c, d ≤ 1, leads to the conclusion c = d .

However, this approach breaks down for virtual line-pairs. A better way
forward is to exploit (16.1). Although τ , δ, � are not invariants of conics, they
give rise to expressions which are. For instance it is clear from (16.1) that the
ratio ω = τ 2 : δ is an invariant of conics. (The expressions τ , δ cannot vanish
simultaneously.) Here is an alternative derivation of the fact that congruent
normal forms for real line-pairs have equal moduli.
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Example 16.8 The normal forms y2 − c2x2 with 0 < c ≤ 1 for real line-pairs
have invariants τ = 1 − c2, δ = −c2, � = 0. Thus the invariant σ for such
normal forms is the expression

σ(c) = −
(

1 − c2

c

)2

.

Then given two normal forms with moduli c, d we have σ(c) = σ(d). Using
the inequalities 0 < c, d ≤ 1 we deduce that (c − d)(cd + 1) = 0, and hence
that c = d.

Example 16.9 The argument of the previous example applies equally well to
normal forms y2 + c2x2 with 0 < c ≤ 1 for virtual line-pairs. In that case
τ = 1 + c2, δ = c2, � = 0 and the corresponding invariant is

σ(c) =
(

1 + c2

c

)2

.

However, invariants fail to distinguish parallel line-pairs. For any normal
form the invariants are τ = 1, δ = 0, � = 0 so are independent of the modulus.
For real parallel line-pairs there is a very simple way forward. A congruence
between two real parallel line-pairs will leave the distance between the lines
invariant. For normal forms y2 − k2 with modulus k > 0 that distance is
2k. Thus two normal forms are congruent if and only if the moduli are equal.
However, that argument is not open to us when considering virtual line-pairs
having normal forms y2 +k2 with modulus k > 0. In such a case we have little
choice other than to return to the definitions, and use a little ingenuity.

Example 16.10 Consider two normal forms y2 + j2 and y2 + k2 with
j, k > 0 for virtual line-pairs. We claim that if they are congruent then j = k.
The result of applying a general congruence (14.7) to y2 + k2 is to replace y
by an expression sx + cy + v, where s = sin θ , c = cos θ . That produces the
conic

s2x2 + 2scxy + c2 y2 + 2svx + 2cvy + (v2 − k2).

For this to be a constant multiple of y2 + j2 all the coefficients of x2, xy, x ,
y must be zero, which is equivalent to the conditions s = 0, v = 0. Thus we
require y2 − k2 to be a constant multiple of y2 − j2. Clearly, that can only be
the case when j2 = k2, and hence j = k.
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Exercises

16.3.1 Show that the conclusion of Lemma 16.1 holds when t = 0, provided
p + q = 1, r + s = 1. Deduce that congruent normal forms for (real
or virtual) line-pairs have the same moduli.

16.3.2 Show that the expression �/τ 3 is an invariant of conics. Use this
to show that congruent normal forms for parabolas have the same
moduli.
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Uniqueness and Invariance

In this final chapter we give proofs of two central results. The first is the
Uniqueness Theorem of Chapter 4, that two conics having the same infinite
zero set are equal. And the second is the Invariance Theorem of Chapter 16.

17.1 Proof of Uniqueness

The Uniqueness Theorem for conics mimics the model provided by lines,
namely that two lines L , L ′ having the same zero set coincide. However, the
corresponding statement for conics Q, Q′ is false, as was exemplified by point
and virtual circles. The underlying problem with such examples is that the zero
sets fail to be infinite. When we restrict ourselves to conics with infinite zero
sets the analogous result does hold.

Theorem 17.1 Let Q, Q′ be conics having the same zero set. Then Q, Q′

coincide, provided the common zero set is infinite. (The Uniqueness Theorem.)

Here is the proof for reducible conics. It uses no more than the Component
Lemma, and the uniqueness result for lines.

Proof Since Q is reducible we can write Q = L M with L , M lines. Every
point on L lies on Q, hence on Q′. Then the Component Lemma tells us that L
is a line component of Q′, so Q′ = L M ′ for some line M ′. Suppose first that
L , M intersect in a single point, or are parallel. Choose two points on M , not
on L: then those points must lie on M ′. Since lines are determined by their zero
sets (Theorem 1.1) it follows that M , M ′ are scalar multiples, i.e. M ′ = λM
for some scalar λ �= 0: thus Q′ = λL M = λQ, i.e. Q, Q′ are scalar multiples.
It remains to consider the case when Q is a repeated line, so L , M are scalar
multiples. In that case L , M ′ must be scalar multiples (so M ′ = µL for some
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scalar µ �= 0) else we can find a point on M ′ not on L , hence a point on Q′ not
on Q. Then Q′ = µL2 = µQ, so again Q, Q′ are scalar multiples.

Now consider the irreducible case. It is revealing to extend to general con-
ics the same simple-minded approach we used for lines and real circles. The
key is a general principle in linear algebra, that N linear conditions on (N +1)

unknowns have a non-trivial solution: and, in addition, if the conditions are
linearly independent, then that solution is determined up to a scalar multiple.
In Theorem 1.1 we applied this fact to two linear conditions on the three coef-
ficients a, b, c in a line L = ax + by + c, namely the conditions that L should
pass through two distinct points. The principle told us that there is a non-trivial
solution; moreover, the conditions were linearly independent, so the solution
was determined up to a scalar multiple. The idea is to apply this same line of
thinking to a general conic with six coefficients

Q(x, y) = ax2 + 2hxy + by2 + 2gx + 2 f y + c. (�)

We can find five linear conditions on the coefficients by requiring Q to pass
through five points Zk = (xk, yk) with k = 1, . . . , 5

ax2
1 + 2hx1 y1 + by2

1 + 2gx1 + 2 f y1 + c = 0
...

...
... (17.1)

ax2
5 + 2hx5 y5 + by2

5 + 2gx5 + 2 f y5 + c = 0.

Our general principle tells us that these equations have a non-trivial solution.
(Put another way, through any five points in the plane there passes at least
one conic.) The serious question is whether the conditions (17.1) are linearly
independent. That brings us to the proof of the Uniqueness Theorem in the
irreducible case.

Proof By hypothesis, the zero set of Q is infinite, so contains at least five
distinct points Z1, Z2, Z3, Z4, Z5. It suffices to show that the linear equations
(17.1) are linearly independent, and hence that any conic having the same zero
set is equivalent to Q. Suppose otherwise, so that at least one equation is a
non-trivial linear combination of the others. By symmetry, we can suppose
that the last equation is a non-trivial linear combination of the first four. That
means that any conic passing through Z1, Z2, Z3, Z4 automatically passes
through Z5. For i �= j write Li j for the line joining Zi , Z j . Then the line-
pair comprising the lines L13, L24 passes through Z5, so either Z1, Z3, Z5 are
collinear, or Z2, Z4, Z5 are collinear. Either way we contradict the Component
Lemma, that a line meets an irreducible conic in at most two points.
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Example 17.1 The zero sets of the standard ellipses, standard hyhperbolas,
and standard parabolas of Examples 4.2, 4.3, 4.1 were all shown to be infinite.
Thus their equations are determined up to scalar multiples.

Exercises

17.1.1 Find the conic which passes through the points (2, 3), (3, 2), (3, 1),
(1, 3), (1, 2) and verify that it passes through (2, 1).

17.1.2 Clearly, the hypothesis of the Uniqueness Theorem can be weakened,
by assuming only that the zero set contains five (not necessarily dis-
tinct) points, no three of which are collinear. Show that it suffices to
assume a yet weaker hypothesis, that the zero set contains at least five
(not necessarily distinct) points, no four of which are collinear.

17.2 Proof of Invariance

Our second proof is that of the Invariance Theorem, that the three invariants τ ,
δ, � do not change when a congruence is applied to a quadratic polynomial.

Theorem 17.2 Let Q, Q′ be strictly congruent quadratic functions with in-
variants τ , δ, � and τ ′, δ′, �′. Then τ = τ ′, δ = δ′, � = �′. (The Invariance
Theorem.)

The mechanics of the proof are simplified by using matrix notation, both
for quadratic functions and for congruences. First, we can write the general
quadratic function (�) in a concise matrix form. Recall that in Chapter 4 we
associated to Q the 3 × 3 symmetric matrix

A =

a h g

h b f
g f c


 .

Now write z for the row vector z = (x, y, 1), and zT for its transposed
column vector. The reader will readily check then that Q can be written

Q(x, y) = z AzT . (17.2)

Furthermore, we can write the general congruence (14.7) in the following ma-
trix form

zT = P Z T , (17.3)



170 Uniqueness and Invariance

where Z = (X, Y, 1) and P is the matrix of coefficients

P =

 cos θ sin θ u

−sin θ cos θ v

0 0 1


 . (17.4)

Note that the matrix P has the property that its determinant det P = 1. We use
this fact in the following proof of the Uniqueness Theorem.

Proof To clarify its structure, we split the proof into three steps, one for each
of the three invariants.

Step 1 We use the matrix form (17.2) for the quadratic function Q, and
likewise (17.3) for a general congruence. Applying the congruence to Q, we
obtain the quadratic polynomial

Q′(X, Y ) = z AzT = Z(PT AP)Z T .

Thus A′ = PT AP is the matrix associated to Q′. Using the multiplicative
property of the determinant, and det P = det PT = 1, we have

�′ = det A′ = det(PT AP) = det PT det A det P = det A = �.

Step 2 Now let B, B ′ be the leading 2 × 2 submatrices of A, A′, and let S be
the leading 2 × 2 submatrix of P . Then, by inspection, B ′ = ST BS. Using the
multiplicative property of the determinant again, and det S = det ST = 1, we
have

δ′ = det A′ = det(ST BS) = det ST det B det S = det B = δ.

Step 3 It remains to prove that τ ′ = τ . Recall from linear algebra that the
trace τ(U ) of a 2 × 2 matrix U is the sum of its diagonal entries. We use the
fact that for two such matrices U , V we have τ(U V ) = τ(V U ). Then, using
the notation of Step 2, and the fact that SST is the identity matrix

τ ′ = τ(B ′) = τ(ST BS) = τ(SST B) = τ(B) = τ.

The reader who goes further down the geometry road will discover that
there is rather more to the invariants τ , δ, � than is expressed by the Invari-
ance Theorem. There is a real sense in which they are the only invariants of
conics. More precisely, any polynomial expression in the coefficients of a gen-
eral conic Q with the same ‘invariance’ property can be expressed solely in
terms of τ , δ, �.
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acoustics, 113
acute angle, 15
angle, 15
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between lines, 16, 164
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of rotation, 138
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asymptote, 75, 115
asymptotic

cone, 115
direction, 75
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bilinear, 12
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canonical form
of circle, 23
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Cauchy Inequality, 13
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chord

of circle, 26
circle, 108

general, 23
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conic, 22, 23
central, 45
constructible, 77, 78, 155
degenerate, 38
irreducible, 42
reducible, 42
singular, 51, 55

conic sections, 161
conics

concentric, 48
conjugate axis, 35, 117
constant, 1
constructible

conic, 77, 78, 155
form, 78

construction, 76
mirror, 81

cosine rule, 16
cross term, 149

degenerate conic, 38
delta invariant, 38
diameter, 67

of circle, 26
direction, 4, 17

asymptotic, 75
quadratic, 71
vector, 17

directrix, 76
of ellipse, 84
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of parabola, 80, 129

discriminant, 38, 52
distance, 14

between lines, 21
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distinguishing conics, 159
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eccentric angle, 36
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of ellipse, 84
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of planet, 112

eigenvalue, 69, 156
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of Fagnano, 111
real, 38, 151
virtual, 38, 151, 164

ends of chord, 26
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of a circle, 25
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Euclidean structure, 12

Fagnano’s ellipse, 111
focal

chord, 97
construction, 76

focus, 76
of ellipse, 84
of hyperbola, 85
of parabola, 80
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general circle, 23
graph

as hyperbola, 117

half–cone, 63
horizontal line, 4
hyperbola, 35–37, 78, 151

narrow, 122
rectangular, 120, 122
standard, 35
wide, 122

image, 35
integration, 121
intersection

of conics, 61
of lines, 5
property, 9, 27, 59
quadratic, 40

Invariance Theorem, 147,
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invariant
delta, 38
discriminant, 38
of conic, 38
trace, 38, 58

inverse map, 138
invertible map, 138
irreducible conic, 42
isometry, 142

joint equation, 42
joint tangent equation, 128

latus rectum, 90, 91, 94
length, 13

of axis, 106, 117
line, 2, 23

horizontal, 4
normal, 94
polar, 126
real parallel, 154
repeated, 42, 57, 154
vertical, 4
virtual parallel, 154

line-pair
real, 42
real parallel, 42
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linear
dependence, 2
function, 2
independence, 2

lines
real parallel, 151
virtual parallel, 151
coincident, 10
concurrent, 5
parallel, 5, 10

locus
midpoint, 66

major
auxiliary circle, 94
axis, 34, 106

map
inverse, 138
invertible, 138

matrix
of conic, 38, 169
of rotation, 138

midpoint, 17
locus, 66
of line, 8

minor
axis, 34, 106

mirror construction, 81
modulus, 162

of ellipse, 34
of hyperbola, 35, 163
of parabola, 33, 163
of real ellipse, 163
of real line-pair, 164
of virtual ellipse, 164
of virtual line-pair, 165

narrow hyperbola, 122
nearest point

on line, 20
normal form

of circle, 152
of conics, 151
of ellipse, 151, 152
of hyperbola, 151
of line-pair, 153
of parabola, 153
of parallel line-pair, 154

normal line, 94

obtuse angle, 15
optics, 113
orthoptic locus, 132

parabola, 33, 78, 98
standard, 33
standard parametrization,

36

parallel
bisector, 21, 73
lines, 5, 10
pencil, 10

parallelogram law, 15
parameter, 35

irregular, 36
parametrization, 35

of ellipse, 107
of hyperbola, 119
of parabola, 102
rational, 120
regular, 36

pencil
of circles, 27
of conics, 59, 79
of lines, 9

perpendicular
bisector, 17, 62
lines, 17
vectors, 12, 15

point, 1
circle, 23

polar
line, 126
of conic, 126

polarization identity, 15
pole, 126
positive definite, 13
prenormal form, 160
projection, 20
Pythagoras Theorem, 16

quadratic
direction, 71
function, 22

radical axis, 27, 28
radius, 23
ratio, 2
rational function, 109
rational parametrization, 120
real

circle, 23
ellipse, 34, 38
line-pair, 42, 57
parallel line-pair, 42, 57

rectangular hyperbola, 120,
122

reducible conic, 42
reflective property

of ellipse, 112
of hyperbola, 123
of parabola, 102

repeated
line, 42, 57
root of quadratic, 40
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right angle, 15
rotation, 140

matrix, 138
of axis, 149

rotational part
of congruence, 139

scalar, 1
multiples, 2, 23
product, 12

semicubical parabola, 96
semilength

of axis, 106, 156
singular

conic, 51, 55
point of conic, 51

slope of line, 4
standard

conics, 39
hyperbola, 35
parabola, 33
real ellipse, 34
virtual ellipse, 153

standard parametrization
of circle, 23
of line, 8

strict congruence, 147
string construction, 111
symmetry

axis, 68
property, 12

tangent
conics, 92
formula, 89
line, 89

touching
circles, 28
line and circle, 26
line and conic, 40

trace invariant, 38, 58
translate

of conic, 45
translation, 45, 139
translational part

of congruence, 139
transverse axis, 35, 117
Triangle Inequality, 13, 14

Uniqueness Theorem, 25,
167

unit vector, 15

vector, 1
vertex

of a conic, 68
of ellipse, 106
of hyperbola, 117
of line-pair, 42
of parabola, 98

vertical line, 4
virtual

circle, 23, 29
ellipse, 38, 164
line-pair, 57
parallel–lines, 57

wide hyperbola, 122

zero set
of conic, 23
of line, 2


