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CHAPTER 6

Techniques of
Integration

Introduction This chapter is completely concerned with how to evaluate inte-
grals. The first four sections continue our search, begun in Section 5.6, for ways to
find antiderivatives and, therefore, definite integrals by the Fundamental Theorem
of Calculus. Section 6.5 deals with the problem of finding definite integrals of func-
tions over infinite intervals, or over intervals where the functions are not bounded.
The remaining three sections deal with techniques of numerical integration that
can be used to find approximate values of definite integrals when an antiderivative
cannot be found.

It is not necessary to cover the material of this chapter before proceeding to the
various applications of integration discussed in Chapter 7, but some of the examples
and exercises in that chapter do depend on techniques presented here.

Our next general method for antidifferentiation is called integration by parts. Just
as the method of substitution can be regarded as inverse to the Chain Rule for
differentiation, so the method for integration by parts is inverse to the Product Rule
for differentiation.

Suppose that U(x) and V (x) are two differentiable functions. According to
the Product Rule,

d dv dU
- (Ux)V ) =Ux) o Ve —

Integrating both sides of this equation and transposing terms, we obtain

/U(x)d—vdx=U(x)V(x)—/V(x)d—de
dx dx

or, more simply,

[UdV:UwaVdU.

The above formula serves as a pattern for carrying out integration by parts, as we
will see in the examples below. In each application of the method, we break up
the given integrand into a product of two pieces, U and V', where V' is readily
integrated and where [ VU’dx is usually (but not always) a simpler integral than
JUV'dx. The technique is called integration by parts because it replaces one
integral with the sum of an integrated term and another integral that remains to be
evaluated. That is, it accomplishes only part of the original integration.
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jxe"dx Let U=x, dV=¢&dx
Then dU = dx, V =¢".

=xe —/exdx (e, UV — [V dU)

=xef —e' +C.

_u

i , . - - i We indicate at the
f in which the integration by parts 18 carried out.
Note the form hen calculate dU and V from

side what choices we are making for U and dV and t . . .
these. However, we do not actually substitute U and V into the integral; instead,

we use the formula [ UdV = UV — [ VdU as a pattern or mnemonic device to
replace the given integral by the equivalent partially integrated form on the second
line.

Note also that had we included a constant of integration with V (for example,
V = e¢* + K), that constant would cancel out in the next step:

fxe"dx:x(ex+K)—f(e"+K)dx
=xe* +Kx—e" —Kx+C=xe"r—e"+C.

In general, do not include a constant of integration with V or on the right-hand side
until the last integral has been evaluated.

Study the various parts of the following example carefully; they show the
various ways in which integration by parts is used, and they give some insights into
what choices should be made for U and dV in various situations. An improper
choice can result in making an integral harder rather than easier. Look for a factor
of the integrand that is easily integrated, and include dx with that factor to make
up dV. Then U is the remaining factor of the integrand. Sometimes it is necessary
to take dV = dx only. When breaking up an integrand using integration by parts,
choose U and dV so that, if possible, V dU is “simpler” (easier to integrate) than
udv.

Use integration by parts to evaluate:

(a)flnxdx, (b)‘/.x2 sinx dx, (c)/x tan~* x dx, (d)/sin_lxdx.

Solution
(a) /lnxdx Let U=Inx, dV =dx.

Then dU = dx/x, V=ux.
1
=x1nx—/x—dx
X

=xInx -x+C.
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(b) We have to integrate by parts twice this time:

x% sinx dx Let U =x2, dV =sinxdx.
Then dU = 2x dx, V = —cosx.

= —x? cosx+2/x cosxdx Let U=ux, dV = cosxdx.
Then dU = dx, V =sinx.

=—x%cosx+2 (x sinx — / sinxdx)

—x% cosx +2x sinx +2 cosx + C.

(©) /x tan~! x dx Let U =tan"'x, dV = xdx.
Then dU =dx/(1+x%), V=1x%

1, 1 1 x2
=§X tan X—E'/\mdx

1, ., 1 1
ZEX tan X—E/ l—m dx

1 1 1
=—x2tan_1x—5x+§tan*1x+(].

(d) fsin_lxdx Let U =sin"'x, dV =dx.
Then dU =dx/v/1 — x2, V =x.

Letu =1 — x2,

— i1 _/ X d
=xsin x —dx
T 2
I=x du = —2xdx.
1
=x sin_1x+5/u_1/2du

=xsin'x+u?+C=xsin"'x+v1—-x2+C.

The following are two useful rules of thumb for choosing U and dV:

(i) If the integrand involves a polynomial multiplied by an exponential, a sine or a
cosine, or some other readily integrable function, try U = the polynomial and
dV = the rest.

(i) If the integrand involves a logarithm, an inverse trigonometric function, or
some other function that is not readily integrable but whose derivative is readily
calculated, try that function for U and let dV equal the rest.

(Of course, these “rules” come with no guarantee. They may fail to be helpful if
“the rest” is not of a suitable form. There remain many integrals that cannot be
evaluated by any of the standard techniques presented in this chapter.)

The following two examples illustrate a frequently occurring and very useful
phenomenon. It may happen after one or two integrations by parts, with the possible
application of some known identity, that the original integral reappears on the right-
hand side. Unless its coefficient there is 1, we have an equation that can be solved
for that integral.
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| Example 3 JEIEIUSES / sec’ x do.

Solution Start by integrating by parts:

I =/sec3xdx Let U =secx, dV = sec® x dx.
Then dU = secx tanx dx, V =tanx.

=secx tanx —/secx tan® x dx
=secx tanx — /secx(seczx —1)dx

=secx tanx—/sec3xdx+/secxdx

=secx tanx — I +1In|secx + tanx|.

This is an equation that can be solved for the desired integral I: Since
21 =secx tanx + In|sec x + tan x|, we have

1 1
fsecaxdx == 3 secx tanx+—2— In|secx +tanx|+ C.

This integral occurs frequently in applications and is worth remembering.

I3 ET IS Find I = /e”x cosbxdx.

Solution 1If either a = 0 or b = 0, the integral is easy to do, so let us assume
a # 0and b # 0. We have

I =/e‘”‘ coshxdx Let U = e%, dV = cosbxdx.
Then dU = ae** dx, V = (1/b)sinbx.
1
= Be“" sinbx — % fe”" sinbx dx

Let U = e**, dV =sinbxdx.
Then dU = ae*dx, V = —(cosbhx)/b.

1 1
= -I;eax sinbx — g (_Eeax cosbx + % feax 08 b dx)
1 ax 3 a  ax 612
= I;e sinbx + ﬁe cosbx — EEI'
Thus,
2
1
<1 + %2‘) I = Ee‘”‘ sin bx + %e‘” cosbx + Cy
and
fe“" coshxdx =1 = be® sinbx + a e®™ cosbx +C
b2 + a2

Observe that after the first integration by parts we had an integral that was different
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from, but no simpler than, the original integral. At this point we might have
become discouraged and given up on this method. However, perseverance proved
worthwhile; a second integration by parts returned the original integral / in an
equation that could be solved for I. Having chosen to let U be the exponential
in the first integration by parts (we could have let it be the cosine), we made the
same choice for U in the second integration by parts. Had we switched horses in
midstream and decided to let U be the trigonometric function the second time, we
would have obtained

1 1
I = Ee‘”‘ sinbx — Ee‘”‘ sinbx + I;

we would have undone what we accomplished in the first step.

If we want to evaluate a definite integral by the method of integration by parts,
we must remember to include the appropriate evaluation symbol with the integrated
term.

I (A definite integral)

/ x> (nx)2dx Let U = (Inx)?, dV = x3dx.
1

Then dU = 2Inxdx)/x, V =x*/4.

4 e

1 e
=f4-(1nx)2 —E/ Pinxdx Let U=Ix, dV=x%dx.
! ! Then dU =dx/x, V =x%/4.
et 1 /x* ¢ 1 e
=—(15»-0—z (= Inx| —= 3d
4( ) 2<4 n)c1 4/;x x)
et e4+1x4e e4_|_e4 1 5 4 1
= — — — - — = — —_———_—= —f — —,
4 8784|832 32 3R 32

Reduction Formulas

Consider the problem of finding | x*e* dx. We can, as in Example 1, proceed by
using integration by parts four times. Each time will reduce the power of x by 1.
Since this is repetitive and tedious, we prefer the following approach. For n > 0,

let
I, = fx" e *dx.

We want to find /. If we integrate by parts, we obtain a formula for I, in terms of
In—l:

I, = /x”e_x dx Let U =x", dV = e *dx.
Then dU = nx"~ dx, V =—e*.

=—x"e T+ n‘/‘x"_1 e Fdx =—x"e* +nl,_;.

The formula
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is called a reduction formula because it gives the value of the integral I, in terms
of I,_,, an integral corresponding to a reduced value of the exponent f, Starting
with

Iy = /xoe—xdx =/e’xdx =—e " +C,
we can apply the reduction formula four times to get

L=—xe*+Lh=—-e"x+1D+C

L =—x%e ™ +2I = —e 2+ D+ Gy
L=—x%"+3L = —e (P 432+ 6x +6)+ G

I = —x*e™ + 45 = —e ™ (x* + 4x7 + 12x% + 24x + 24) + C,.

IEITIEYM  Obtain and use a reduction formula to evaluate

/2
In=/ cos” x dx n=0,1,23,...).
0

Solution Observe first that

n/2 - /2 /2
Io=/ dx = — - and 11=/ cosxdx =sinx =1.
0 2 0 0
Now letn > 2:
/2 72
1, :/ cos”xdx:/ cos" ! x cosx dx
0 0
U = cos"x, dV = cosxdx
dU = —(n— Dcos" 2x sinxdx, V =sinx

1

/2 /2

o n— n—2 s 2

=sinx cos" " x +rm-1 cos"“x sin“ x dx
0

0

/2
=0-—O+(n—1)/ cos" 2 x (1 — cos? x) dx
0

=n—-DhL——m—DI,
Transposing the term —(n — 1)1, we obtain nl, = (n — 1)1, 5, or

n—1
In = In—2,
n

which is the required reduction formula. It is valid for n > 2, which was needed to
ensure that cos” ! (;/2) = 0. If n > 2 is an even integer, we have

In:n—lln_2=n—l‘n—31n#4=‘”
n n n—2
n—1 n—-3 n->5 5 31 I
T W hn—2'n—4 6227
n—1 n—-3 n-=->5 53 1 n

n n-2 n—-4 6 4 2 2
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If n > 3 is an odd integer, we have

n—1 n-3 n-35 6 4 2
Inz . . ...—._._.Il
n n—-2 n—4 7 5 3
_n—l n—3 n-5 6 4 2
T n n-2 n-4 75 3

See Exercise 38 for an interesting consequence of these formulas.

Evaluate the integrals in Exercises 1-28.

n

11.

17.

19.

21.

25.

%27,

29

/xcosxdx

x2cosmxdx

B nxdx

cos(lnx) dx

In(l
/n(nx) dx
X
. /arccosxdx

2
/sec'lxdx
I

x=0tox=nm

/ x(tan_1 )c)2 dx

. Find the area below y = ¢7* sinx and above y = 0 from

2. / (x + 3)e¥ dx

4. f (x% — 2x)e"* dx

6. /x(lnx)3dx
8. /xztanflxdx
10. /xse_)‘2 dx

12. / tan? x sec x dx

14. xeV¥ dx
1

16. / Vx sin(m/x) dx
0

18. fxsinzxdx
e

20. f sin(lnx) dx
1
4

22, / VxeV* dx
0

24. /xsec_lxdx

*26. / (sin"! x)2 dx

* 28, /xex cosxdx

30. Find the area of the finite plane region bounded by the curve

y = Inx, the line y = 1, and the tangent line to y = Inx at
x =1

Reduction formulas

31. Obtain a reduction formula for I, = f (Inx)" dx, and use it

32.

33.

34.

* 35,

* 36.

* 37,

to evaluate Iy.

Obtain a reduction formula for I, = fon/ 2 sin x dx, and
use it to evaluate Ig.

Obtain a reduction formula for I, = [ sin” x dx (where
n > 2), and use it to find /g and I7.

Obtain a reduction formula for I, = f sec” x dx (where
n > 3), and use it to find /g and /7.

By writing

I = dx
n= (x2 +(12)"

1 dx 1 X d
= — —_—— X ———dXx
a? ] (2+a>1 a? (x2 +a?)y

and integrating the last integral by parts, using U/ = x, obtain
a reduction formula for I,,. Use this formula to find /3.

If f is twice differentiable on [a, b] and f(a) = f(b) =0,
show that

b b
/ x—a)yb—x)f"(x)dx = —2/ fx)dx.

(Hint: use integration by parts on the left-hand side twice.)
This formula will be used in Section 6.6 to construct an error
estimate for the Trapezoid Rule approximation formula.

If f and g are two functions having continuous second
derivatives on the interval [a, b], and if
f(a) = gla) = f(b) = g(b) = 0, show that

b b
/f(X)g”(x)dx=/ f7(x) g(x)dx.

What other assumptions about the values of f and g at a and
b would give the same result?
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+ 38. (The Wallis Product) Let 1, = fon/ % cos™ x dx. obtained for I, (for even and odd n) in Example 6 to

(a) Use the factthat 0 < cosx < 1for0 <x <m/2to show that
show that Iry,12 < byl < Iy, forn=0,1,2,....

(b) Use the reduction formula I, = ((n — 1)/n)I,— lim 224466  2n 2n _T
obtained in Example 6, together with the result of (a), to nso0ol 3 3 5 5 7 2n—1 2n+1 2
show that

lim fontt =1 This interesting product formula for 7 is due to the
n=o0 I seventeenth-century English mathematician John Wallis

(¢) Combine the result of (b) with the explicit formulas and is referred to as the Wallis Product.

The substitutions considered in Section 5.6 were direct substitutions in the sense that
we simplified an integrand by replacing an expression appearing in it with a single
variable. In this section we consider the reverse approach; we replace the variable
of integration with a function of a new variable. Such substitutions, called inverse
substitutions, would appear on the surface to make the integral more complicated.
That is, substituting x = g(u) in the integral

b
/ fx)dx

leads to the more “complicated” integral

x=b
/ f(g@) g'(w) du.

=a

As we will see, however, sometimes such substitutions can actually simplify an
integrand, transforming the integral into one that can be evaluated by inspection or
to which other techniques can readily be applied.

The Inverse Trigonometric Substitutions
Three very useful inverse substitutions are:

X =asin0, x =atand, and X =asech.
These correspond to the direct substitutions:

X x x a
@ =sin"!Z, § =tan ' =, and 0 =sec”' = =cos1-.
a a x

a

1

The inverse sine substitution

Integrals involving +/a? — x2 (where a > 0) can frequently be reduced to
a simpler form by means of the substitution
1 X

x = asiné or, equivalently, 6 =sin~!—.
a



o

a? — x?
Figure 6.1

NG
X

6

V5 —x2
Figure 6.2

y = a? — x2

Figure 6.3

i\
LV
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Observe that +/a2 — x2 makes sense only if —a < x < a, which corresponds to
—m/2 <8 < x/2. Since cos# > 0 for such &, we have

Va2 —x2 = \Ja2(1 — sin? 8) = Va2 cos? 6 = acos¥.

(If cos # were not nonnegative, we would have obtained a| cos | instead.) If needed,
the other trigonometric functions of 6 can be recovered in terms of x by examining
aright-angled triangle labelled to correspond to the substitution. (See Figure 6.1.)

cosf = ——— and tanfd = ———.
a a2__x2

1
EValuate/ mdx

Solution Refer to Figure 6.2.

/(5—_1—2)—3/5(1)6 Let x = +/5sin8,
dx = +/5cos0 de.
V5 cos6 db
/ 53/2¢0836
1 1 x
=3 fsec OdG—gtan9+C—gﬁ+C

IS ¥ Find the area of the circular segment shaded in Figure 6.3.

Solution The areais

a
A=2/ va? —x2dx Letx = asiné,
b

dx =acos8do.

= 2/ a? cos’9.do
x=b

x=a

= a’ (9 + sin6 cos 9)

(as in Example 8 of Section 5.6)
x=b

o f . x xva—x2\[
=qg° |smn — 4+ ——F—r
a a?

b

) 2 . b 5 > .

=54 -a sin_" — — by a’ — b* square units.
a

(See Figure 6.1.)
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Ja? + x?

Figure 6.4

V4 -+ x?

Figure 6.5

V14 9x2

3x

Figure 6.6

The inverse tangent substitution

(where a > 0) are often simpli-

Integrals involving v/a2 + x? or
fied by the substitution

x% 4 a?

1

) X
x =atanf - or equivalently, 6 =tan™" —
a

Since x can take any real value, we have —n/2 < 6 < m/2,sosecf > 0 and

Val+x?2=av1+tan?8 = asech.

Other trigonometric functions of & can be expressed in terms of x by referring to a
right-angled triangle with legs @ and x and hypotenuse v/a? + x? (see Figure 6.4):

a

Var+x%

X

va? +x?

sinf = and cosf =

1 1
m Evaluate (a ——d d (b ———dx.
@[ Gt wt [

Solution Figures 6.5 and 6.6 illustrate parts (a) and (b), respectively.

1
(a) /———dx Letx = 2tané,
/4 2
T dx = 2sec?6 do.
2 2
=/ sec edG
2secH

=/sec€d9

/ 2
=1n|sect9+tan9|+C:1n‘_i;__x+_;_ +C

=In(V4+x2+x)+Cy, where C; = C — In?2.
(Note that /4 4+ x2 4+ x > 0 for all x, so we do not need an absolute value on it.)

1
b —d
®) /(1+9x2)2 o
_/sec29d6’
3 sec? 0
1 2
cos“0do =

Let3x =tané,

3dx = sec?0do,
14 9x? = sec?9.
1

(6 +siné cos 6) + C

= — tan" (3x) +1 3x ! +C
6 VI+9x% T+ 92

1 X

1

3 -3 C
(x)+21+9x2+

N —

3

—_—

_ N

= — tan~

)}
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The inverse secant substitution

Integrals involving 4/x? — a? (where a > 0) can frequently be simplified
by using the substitution

. x
x =asech or,equivalently, 6 =sec™!=
a

We must be more careful with this substitution. Although

\/x2 —a?2=a+sec?0 — 1 =avtan?0 = a|tand)|,

we cannot always drop the absolute value from the tangent. Observe that vx? — a2
makes sense for x > ¢ and for x < —a.

X a T
Ifx > a,then0 < § =sec™! = = arccos — < R and tan9 > 0.
a X
T X a
If x < —a, then 5 < 6 = sec”!= = arccos — < 7, and tané < O.
a X

In the first case v x2 — a2 = a tan @; in the second case vx2 — a2 = —a tan 4.

dx
&1 WM Find ] = [ ———, wherea > 0.
/%2 — a2

Solution For the moment assume that x > a. If x = a sec, then
dx = asec tan8 df and v/ x2 — a? = a tan8 (Figure 6.7). Thus,

+ I=/sec@d0=ln|sec€+tan6|+C
xt—a? )
x x2—a
f =In|—-4+ —— |+ C=Inx+vx2—-a?|+ (),
_ a a
Figure 6.7 where C;, = C —Ina. If x < —a,letu = —x so that u > g and du = —dx. We
have
I=- ——Lz—lnlu+\/u2—a2|+c
i — a2 !
1 x4+ +/x2—a?
=In +C]
—x+/x2—a? x +/x2 —a?
x ++/x2—a?
=In|—————|+ Ci=Inlx +Vx?—a? + C,,
—a

where C; = C; — 21Ina. Thus, in either case, we have

I=In|x++vx?—a? +C.
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Completing the Square

Quadratic expressions of the form Ax+ Bx4C are often found in integrands. These
can be written as sums or differences of squares using the procedure of completing
the square. First factor out A so that the remaining expression begins with x2+ 2bx,
where 2b = B/A. These are the first two terms of (x + b)? = x* + 2bx + b*. Add
the third term b> = B?/4A? and then subtract it again:

B C
AxX>+Bx+C=A(x*+ —x+—
x“+ Bx + (x —I—Ax+A)

( B B? c B2)
Al +—x+—+-———

A 4A2 A 4A2

4 +B 2+4AC—32
*T3 4A

The substitution 4 = x + ﬁ should then be made.

1
Evaluat dxand(b) | ————
EEIE Bt @ [ dvand ) [ o

Solution
1 x
[y ——
2x — x? V1= —2x+x2)
dx
—1——1—5 Letu =x —1,
=D du = dx.
f————du in"lu+C=sin"lx-1)+C
= =sin " u =sin " (x — .
V1 —u?
X xdx
b — _dx =
®) /4x2+12x+13 o / 9
4 x2+3x+Z+1
_1/ xdx L 3/
=7 Iz etu =x + (3/2),
(x-{——z—) +1 du =dx,
x =u—(3/2).
_lfudu 3/du In the first inteeral
=12 2118 21 n the first integra
letv=u?+1,
dv =2udu.
_l dv 3t 1
3 " g an " u
1 -1
§1n|v|——tan u+C
1

3
=3 In(4x? + 12x + 13) — g tan™" <x + %) +Cy,
where C; = C — (In4)/8.
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Other Inverse Substitutions

Integrals involving +/ax + b can sometimes be made simpler with the substitution
ax +b = u.

1
[ Let2r = i,
e 14+ V2x

2dx =2udu.

1 -1
=/ “ du=/Ldu
14+u 14+u
1
:/(1— )du Letv=14+u,
14u

dv =du.

d
=u——/—v=u—ln|v|+C
v

2x —In(1 +v2x) + C

Sometimes integrals involving «/ax + b will be much simplified by the hybrid
substitution ax + b = u", adx = nu" ' du.

| Exampic 7 IS dx Let3x +2 =,

3
Brr2
113 V3% +2 3dx = 3u’du.

/2u3—2 )
= u“du
i 3u

2 5 2
1 16
w* = 2u)du = - N
1 315 . 15
Note that the limits were changed in this definite integral. ¥ = 1 whenx = —1/3,

and, coincidentally, # = 2 when x = 2.

If more than one fractional power is present, it may be possible to eliminate all of
them at once.

1

xample 8 Evaluate/ mdx

Solution We can eliminate both the square root and the cube root by using the
inverse substitution x = u%. (The power 6 is chosen because 6 is the least common
multiple of 2 and 3.)

dx L s
m etx =u°,
dx = 6u’ du.

w’du u? 1
/u3(1+u2) /l+u2 “ /( 1+u2) du

=6@w—tan"'u)+C =6(x"° —tan"' x/%) + C.
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The tan(68/2) Substitution

There is a certain special substitution that can transform an integral whose mtegrand
is a rational function of sin# and cos 6 (i.e., a quotient of polynomials in sin & and
cos 8) into a rational function of x. The substitution is

6
= tan 3 or,equivalently, 6 = 2tan ' x.

Observe that
21 1 1
C —- = = =
2 6 6  14+x%
ec2— 1 4tan? =
seety Aty
S0
0 2 1—x?
9=2 2——1:-—— = e—
cos cos® = T T2

sin 2sin9 os‘9 2tanec 529 2x
ind = —COS — = —Cos” — = .
2 2 2 2 14 x2

1 6
Also, dx = — sec? — dé, so
2 2

2dx

6
do =2cos® —dx = ——.
COS 2 X 1+x2

In summary:
The tan(9/2) substitution
If x = tan(6/2), then

1-x? 2x 2dx

cosf = i sing = 15 and  df = T

Note that cos 8, sinf, and d6 all involve only rational functions of x. We will
examine general techniques for integrating rational functions of x in Section 6.3.

1
Example 9 / —de Let x = tan(6/2), so
2 4+ cos6 ) )
— X

cosfd = ——,
14 x2

do = 294
14 x2

1+x2 / 1
= = =2 d
f 1—x2 3+ x2 o
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Evaluate the integrals in Exercises 1-36.

dx
1. | ——
/\/1—4)(2

3, x2dx
9 —x2
5 / dx
x2,/9 — x2
7. x + 1
_ x2
0, x3dx

V9 +x2
1 dx
: (a2 — x2)3/2
x%dx
13. / (az _ x2)3/2
d
15. / N
x/x2—4

dx
17. _
2 42x 4+ 10

o [
(4x2 +4x 4 5)2

(x> 2)

xdx

v 2ax — x?2
xdx
23.
/ 3-2x — x2)3/2

25, _dx
(14 x2)3

/\/1;X2dx
X

21.

* 27,

dx
29, | ——
/2+ﬁ

1+x1/2
* 31. /mdx

gl

&

10.

1

16.

18.

20.

22,

24

2

28.

30.

32

/
/
/

/

./ (1 +2x2)3/2

dx
/ x2/x2 — g2

/
/

xdx

dx
dx »
x/9—x2
dx
9+x2 dx
X

’ dx
. (a2 + x2)3/2

14.

dx
x24x+1

xdx

x2-2x+3

dx
(4x — x2)3/2

(1+x2)2

/\/9+x2dx

/

dx
14+ x1/3

xy/2 — x2
Vx2+1

) /(x2+2x—|—2)2

s [

dx

33.

35.

2
©/ COS x

0
/ e*+/1 — e2x dx 34, —dx
—In2 0 /1+sin2x

/‘/—1 dx 36 /'2 dx
1 x2+2x 42 “hoe2 /9 — x2

In Exercises 37-39, evaluate the integral using the special
substitution x = tan(f/2) as in Example 9.

%« 37,

* 39,

40.

41.

42,

43.

(x>a=>0) 44.

45.

46.

=47,

= 48,

do 18 /2 de
—_— %38, -
2 +siné 0 14 cosf + sin6

do
342cosé
Find the area of the region bounded by
y=(2x —xz)_l/z, y=0,x=1/2,and x = 1.
Find the area of the region lying below
y = 9/(x* + 4x2 + 4) and above y=1.
Find the average value of the function
fx) = (x2 — 4x + 8)73/2 over the interval {0, 4].
Find the area inside the circle x% + y% = 2 and above the
liney =b,(—a <b < a).
Find the area inside both of the circles x2 + y? =1and
x—22+y2 =4
Find the area in the first quadrant, above the hyperbola
xy = 12 and inside the circle x2 4 y? = 25.
x2 y2
Find the area to the left of -+ i 1 and to the right of
a
the line x = ¢, where —a < c¢ < a.
Find the area of the region bounded by the x-axis, the
hyperbola x2 — y2 = 1, and the straight line from the origin
to the point ( 1+72, Y) on that hyperbola. (Assume
Y > 0.) In particular, show that the area is ¢/2 square units
if ¥ = sinhz.

Evaluate the integrals

dx dx
———— and —_——
/ /42 — a2 / ¥2 /%2 — a2

for x > a > 0 using the substitution x = a cosh u. (Hint:
review the properties of the hyperbolic functions in Section
3.6.) This substitution is an alternative to x = a sec  when

dealing with v/x2 — a2.
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In this section we are concerned with integrals of the form

P(x)

Q(x)
where P and Q are polynomials. Recall that a polynomial is a function P of the
form

dx,

P(x) = apx" + ap_1x" '+ 4 ax+aix +ap

where n is a nonnegative integer, ap, ai, az, ..., d, are constants, and a, # 0.
We call n the degree of P. A quotient P(x)/Q(x) of two polynomials is called a
rational function. We need normally concern ourselves only with rational functions
P(x)/Q(x) where the degree of P is less than that of Q. If the degree of P equals
or exceeds the degree of Q, then we can use long division or some equivalent
procedure to express the fraction P(x)/Q(x) as a polynomial plus another fraction
R(x)/Q(x), where R, the remainder in the division, has degree less than that of Q.

3 3 2
Evaluate / H—xdx.
x241

Solution The numerator has degree 3 and the denominator has degree 2 so we
need to divide. We use long division:

x 4+ 3
xr 4+ 1 ’x3 + 3x?
x3 + x x3 4 3x2 x+3
B a1 T
3x2 + 3

- x —3
Thus,

x3 4+ 3x2 x dx
T " dx = _ _ _ax
/ 21 x /(x+3)dx _/x2+ldx 3/x2+1

L, 1 2 -1
=§x +3x—§1n(x +1)—3tan " x + C.

Example 2 R / S dx

x—1

Solution The numerator and denominator have the same degree, 1, so division is
again required. In this case the division can be carried out by manipulation of the
integrand:

x _l 2x _12x—1—|—1_1 ] 1
w1 2a—1 2 -1 22Ut i)

a process that we can call short division. We have

/xdx—1/1+1 dx=24 Y mpe—1+c
x-1772 ey R E
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In the discussion that follows, we always assume that any necessary division has
been performed and the quotient polynomial has been integrated. The remaining
basic problem with which we will deal in this section is the following:

The basic problem

P(x)
*)

The complexity of this problem depends on the degree of Q.

Evaluate / 0 dx, where the degree of P < the degree of Q.

Linear and Quadratic Denominators

Suppose that Q(x) has degree 1. Thus Q(x) = ax + b, where a # 0. Then P(x)
must have degree 0 and be a constant c. We have P(x)/Q(x) = ¢/(ax + b). The
substitution u = ax + b leads to

d
f C =2+,
ax + b a u a

so that, forc =1
The case of a linear denominator

1 1
/ dx = —Inlax+b|+ C.
ax +b a

Now suppose that Q(x) is quadratic, that is, has degree 2. For purposes of this
discussion we can assume that Q(x) is either of the form x? 4+ 4 or of the form
x2 — a?, since completing the square and making the appropriate change of variable
can always reduce a quadratic denominator to this form, as shown in Section 6.2.
Since P(x) can be at most a linear function, P(x) = Ax + B, we are led to consider

the following four integrals:

xdx xdx dx dx
- . ———, and -
x2 4 a? /)cz—a2 /'xz+a2 [xz-—a2

(If a = 0, there are only two integrals; each is easily evaluated.) The first two
integrals yield to the substitution u = x? 4 a?; the third is a known integral. The
fourth integral can be done with the substitution x = asin6 if |x| < |a|, and with
the substitution x = a sec@ if |x| > |a|, but we will evaluate it by a different method
below. The values of all four integrals are given in the following box:

The case of a quadratic denominator

xdx 2
f;z-:’i — In@x*+a>) +C,

xdx 1
v—a2 2
1

dx
= ic,
fx2+a2 a +

In|x? - a% + C,

dx _ 1 x—a

+C.

2—a2 x+a
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To obtain the last formula in the box fet us try to write the integrand as a sum of

two fractions with linear denominators:
1 A B Ax + Aa+ Bx — Ba
= —_—

1
a2

- = =+
x2——a2—(x——a)(X+a) x—a x+a

where we have added the two fractions together again in the last step. 1f this

i identi = 4a), then the numerators
i hold identically for all x (except X a), (
e 1oft an t be identical as polynomials in x. The equation

Ox + 1 can hold for all x only if

»

equ .
on the left and right sides mus

(A+B)x+ (Aa—Ba)=1=

A+B=0 (the coefficient of x)

Aa— Ba=1 (the constant term)

Solving this pair of linear equations for the unknowns A and B, we get A = 1/(2a)
and B = —1/(2a). Therefore,

dx 1 /‘ dx 1 dx
/xz—az_Za x—a 2a ) x+a
1 1

=Zln|x—a|——zzln|x+a|+C

X —a
X +a

+C.

= —In
2a

Partial Fractions

The technique used above, involving the writing of a complicated fraction as a
sum of simpler fractions, is called the method of partial fractions. Suppose that
a polynomial Q(x) is of degree n and that its highest degree term is x" (with
coefficient 1). Suppose also that Q factors into a product of  distinct linear (degree
1) factors, say

Qx)=(x—a)x —az)---(x —ay),

where a; # a; ifi # j, 1 < i, j < n. If P(x) is a polynomial of degree smaller
than n, then P (x)/Q(x) has a partial fraction decompeosition of the form

Pix Aq A A
) L 2 e 2
o) x=—ar. "x—a X = @y
for certain values of the constants A}, A, ..., A,. We do not attempt to give any

formal proof of this assertion here; such a proof belongs in an algebra course. (See
Theorem 1 below for the statement of a more general result.)

Given that P(x)/Q(x) has a partial fraction decomposition as claimed above,
there are two methods for determining the constants A;, Ay, ..., A,. The first
of these methods, and one that generalizes most easily to the more complicated
decompositions considered below, is to add up the fractions in the decomposition,
obtaining a new fraction S(x)/Q(x) with numerator S(x), a polynomial of degree
one less than that of Q (x). This new fraction will be identical to the original fraction
P(x)/Q(x) if S and P are identical polynomials. The constants Aj, As, ..., A,
are determined by solving the n linear equations resulting from equating the coef-

ficients of like powers of x in the two polynomials S and P.
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The second method depends on the following observation: If we multiply the
partial fraction decomposition by x — a;, we get

Px)
(x —ay)
Q(x)
X —a; X —a; X —a; X —a;
= A j+"'+Aj_1—j+Aj+Aj+1—]+-"+An—J.
X —ad X —aj_1 X —4j4+1 X —dy

All terms on the right side are 0 at x = a; except the jth term, A;. Hence

P
x4 gl Qx)
P(a;)

(@ ~a1) -+ (a5 ~ aj-1)(@; = aj1) - (@ — an)’

for 1 < j < n. In practice, you can use this method to find each number A; by
cancelling the factor x — a; from the denominator of P (x)/Q(x) and evaluating the
resulting expression at x = a;.

4
Example 3 RS0 / ;%dx.

Solution The partial fraction decomposition takes the form

x+4 _ x+4 _ A " B
x2—5x+6 (x—-D(x-3) x-2 x-3

We calculate A and B by both of the methods suggested above.
Method 1. Add the partial fractions

x+4 _Ax—3A+Bx—2B
x2—-5x+6  x-2x-3)

and equate the coefficient of x and the constant terms in the numerators on both
sides to obtain

A+B=1 and —3A—-2B =4.

Solve these equations to get A = —6and B = 7.

Method II. To find A, cancel x — 2 from the denominator of the expression
P(x)/Q(x) and evaluate the result at x = 2. Obtain B similarly.

_x+4

4
=—-6 and B=x+
x—3

x=2 x=2

A

=17.

In either case we have

x+4 1 1
————dx = —6 d 7
/x2—5x+6 o _/x—2 X+ /x—3dx

=—6In|x —2|+7In|x — 3|+ C.
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x3+2
Example 4 Evaluate [ = / 5«

merator does not have degree smaller

dx.

than the denominator,
Solution Since the nu
we must divide:

2
2 x+ )
x3"‘x+x+2dx= 1+x+ )dx=x+fx3_xdx
=[P o

¢ method of partial fractions.
c
x+2 _xx2 AL B 1
Pox xx-Dx+D x x-1 x+ 2
A2 — 1)+ B2 +2) + C&x* =)
- xx— D&+ D

Now we can use th

A+B+C =0 (coefficient of x?)
B —-C =1 (coefficient of x)
- A = 2 (constant term).
It follows that A = —2, B = 3/2, and C = 1/2. We can also find these values
using Method II of the previous example:

x+2 x+2 3

= = -2, B=—— = —, and
(x — D+ 1), x(x+ Do 2

_ x+2 _1

Taxx=-D|_, 2

Finally, we have

1 3 ] 1 1
T=x—2[2dax+2> dx 4 = d
x /x x+2/x—1x+2/x+1x

3 1
:x—21n|x|+§1n|x—1|+§1n|x+1|+C.

Next we consider a rational function whose denominator has a quadratic factor that
is equivalent to a sum of squares and cannot, therefore, be further factored into a
product of real linear factors.

24+ 3x + x2

Example 5 I / .

Solution Note that the numerator has degree 2 and the denominator degree 3, so
no division is necessary. If we decompose the integrand as a sum of two simpler
fractions, we want one with denominator x and one with denominator x2 + 1. The
appropriate form of the decomposition turns out to be

x(x2+1) x| x2+1 x(x24+1)

243x+x> A Bx+C  AG*+1)+Bx*+Cx
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Note that corresponding to the quadratic (degree 2) denominator we use a linear
(degree 1) numerator. Equating coefficients in the two numerators, we obtain

A + B = 1 (coefficient of x?)
cC =3 (coefficient of x)
A = 2 (constant term).

Hence A =2, B = —1, and C = 3. We have, therefore,

2 2 1 1
/mdx:2/—dx—/——x—dx+3/—dx
x(x24+1) x x2+1 x2+1
1

=21n|x[—5 In(x>2+ 1) +3tan" ' x + C.

We remark that addition of the fractions is the only reasonable real-variable method
for determining the constants A, B, and C here. We could determine A by Method II
of Example 3, but there is no simple equivalent way of finding B or C without using

complex numbers.
)|

|
3'C1G M-l Evaluate ] = / x3—+1dx.

Solution Here O(x) = x>+ 1 = (x + D(x® — x + 1). The latter factor has no
real roots, so it has no real linear subfactors. We have

1 1 A Bx +C
+1 (x+1)(x2—x+1)_x+1+x2—x+1
AP —x+ D+ B+ x)+Cx+1)
h x+DE2—x+1

A+ B =0 (coefficient of x2)
— A+ B +C =0 (coefficient of x)
A + C =1 (constant term).

—

Hence A=1/3,B = —

1 dx 1 x—2
[ = — N = = 4
3/x+1 3/x2—x+1 x

/3,and C = 2/3. We have

I 3
! L[ *7573
:§1n|x+1|—§/ N2 3dx Letu =x—1/2,
1 1 u 1 1
— gty [ s [
3 3
3 3 2.3 2 2.3
4
1 2 2
:_1n|x+1|——1H<u2+—>+——tan_1(—u>+c
2.3 3
1 2x —1
——1n|x+1|——1n<x2—x+1>+_tan—l(" )+c
3 V3




370 CHAPTER 6 Techniques of Integration

We require one final refinement of the method of partial fractions. If any of the
linear or quadratic factors of Q(x) is repeated (say m times), then the partial fraction
decomposition of P(x)/Q(x) requires m distinct fractions corresponding to that
factor. The denominators of these fractions have exponents increasing from 1 to
m, and the numerators are all constants where the repeated factor is linear or linear
where the repeated factor is quadratic. (See Theorem 1 below.)

1
m Evaluatef md}(

Solution The appropriate partial fraction decomposition here is

1 _A+ B N c
xx—12 x x—-1" (x—1)?2

AT =2+ 1)+ B(x?—x)+Cx

x(x —1)?
Equating coefficients of x2, x, and 1 in the numerators of both sides, we get
A+ B =0 (coefficient of x2)
—2A — B +C =0 (coefficient of x)
A =1 (constant term).

Hence A=1,B=-1,C =1, and

1 1 1 1
— _ix=[cax- [ —a
/x(x—l)2 * /x Sl B ”/(x_l)zd"
1

=lnjx|-Injx—1|———+C
x—1

=In +C'

X ‘ 1

x—1 x—1

X242

3 E KM Evalvate I = | —————d
[ i

Solution The denominator factors to x(2x? + 1)%, so the appropriate partial
fraction decomposition is

X242 A Bx+C Dx+E
x2x24+ 12 x 0 2x241  (2x2+41)?
Alx* +4x2 + 1)+ BRx* +xH) + C(2x% + x) + Dx? + Ex

x(2x2+1)2
Thus
4A + 2B =0 (coefficient of x*)
2C =0 (coefficient of x3)
44 + B + D =1 (coefficient of x2)
C + E =0 (coefficient of x)
A = 2 (constant term).
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Solving these equations, we get A =2, B=—4,C=0,D = -3,and E = 0.

d d d
I=2 _£”4/2ﬁj1”3/}22fn° Letu = 2x2 + 1,
x X 2
x du =4xdx.
— 2| du 3 du
—ome u 4 u?

3
=2In|x|—Injul+-—+C
4u

(-~ V43 L ¢
= in —
2x2 41 4 2x2+1

-

The following theorem summarizes the various aspects of the method of partial
fractions.

Partial fraction decompositions of rational functions

Let P and Q be real polynomials with real coefficients, and suppose that the degree
of P is less than the degree of Q. Then

(a) Q(x) can be factored into the product of a constant K, real linear factors of the
form x — a;, and real quadratic factors of the form X4 bix 4 having no real
roots. The linear and quadratic factors may be repeated:

Q() = K(x —a)™ (x —a)™ -+ (x —ap)™ (x* + byx +¢1)"
(% by )™

The degree of Q ismy +moy+ -+ +mj + 2n( 4+ 2ny + - - - + 2ny.

(b) The rational function P(x)/Q(x) can be expressed as a sum of partial fractions
as follows:

(i) corresponding to each factor (x —a)™ of Q(x) the decomposition contains
a sum of fractions of the form

Ay n Az n Am
x—a (x—a)? (x —aym’

(i) corresponding to each factor (x> + bx + )" of Q(x) the decomposition
contains a sum of fractions of the form

Bix+C Byx + Cy n + B.x +C,
x2+bx+c  (x24+bx+c)? (x24+bx + o)’

The constants Ay, Ay, ..., A, By, By, ..., B,, C{, Ca, ..., C, can be deter-
mined by adding up the fractions in the decomposition and equating the coefficients
of like powers of x in the numerator of the sum with those in P (x).

We will not attempt to prove this theorem here.

Note that part (a) does not tell us how to find the factors of Q(x); it tells us
only what form they have. We must know the factors of @ before we can make use
of partial fractions to integrate the rational function P(x)/Q(x). Partial fraction
decompositions are also used in other mathematical situations, in particular, to solve
certain problems involving differential equations.
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|Exercises 6.3

dx 2% xdx
Evaluate the integrals in Exercises 1-34. 25. / pE . rEa— i

1.

2dx
2x —3

3 xdx
T oax 42

11.

13.

17.

%19,

21.

23.

2.

4.

b

10.

12.

14

16.

18.

20.

22.

+ /(x2—1)(x2

[ wa
e
| 55w
) / 2+gxdj— 9x2
| wme
[+
[emis
[

dx
5 —4x
dx
5—x2

b2 —

xdx
3x24+8x -3

x3 +9x

X +1
12 4+ 7x + x2

dx
_ a4

x3+2x2+2x
X +1

x“dx

4

% 27.

dx
* 29, f
x(3+x2)y/1—x?

1 dx
+ 31. x(l+x2)3/2

* 33,
x 35,

dt
* 28, f(t—l)(tz—l)z

dx
30, | 5

dx
* 32, x_’__—(l )R

tdt
f (t + D@2+ D2

do
_dx 34 | —
x2(x2 - 1)32 cosB(1 + sinfh)
Suppose that P and @ are polynomials such that the degree

of P is smaller than that of Q. If

Q)= (x —a)(x—az}---(x —an),
where a; # a; if i # j(1 < i, j < n),so that P(x)/O(x)

has partial fraction decomposition

Px) A4 A et Ap
0x) x—a x—am x—ay
show that
P(aj) ,
Aj = (I=<j=n).
70

This gives yet another method for computing the constants
in a partial fraction decomposition if the denominator
factors completely into distinct linear factors.

Although anyone who uses calculus should be familiar with the basic techniques
of integration, just as anyone who uses arithmetic should be familiar with the tech-
niques of multiplication and division, technology is steadily eroding the necessity
for being able to do long, complicated integrals by such methods. In fact, today
there are several computer programs that can manipulate mathematical expressions
symbolically (rather than just numerically) and that can carry out, with little or
no assistance from us, the various algebraic steps and limit calculations that are
required to calculate and simplify both derivatives and integrals. Much pain can
be avoided and time saved by having the computer evaluate a complicated integral

such as

14+ x4+ x?

/ (x4

Dt — 162
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rather than doing it by hand using partial fractions. Even without the aid of a
computer, we can use tables of standard integrals such as the ones in the back
endpapers of this book to help us evaluate complicated integrals. Using computers
or tables can nevertheless require that we perform some simplifications beforehand
and can make demands on our ability to interpret the answers we get. We give a
few examples below.

Using Maple for Integration

Computer algebra systems are capable of evaluating both indefinite and definite
integrals symbolically, as well as giving numerical approximations for those definite
integrals that have numerical values. The following examples show how to use
Maple to evaluate integrals.

We begin by calculating / 2*4/1 + 4% dx and / 2°V1 +4%dx.
0

3. <6

We use Maple’s “int” command, specifying the function and the variable of
integration:

> 1nt(27°x*sqgqrt(l1+47°x),x);
1 e&xn) 1+ (e(xln(Z)))2 1 arcsinh(e(““(z)))
— + —

2 In(2) 2 In(2)
If you don’t like the inverse hyperbolic sine, you can convert it to a logarithm:

> convert(%,1n);

1
@) /T Gmanz 51 (e("'“(z))+v1+(e(““<2”)2)
+

1

2 In(2) n(2)
The “%” there refers to the result of the previous calculation. Note how Maple
prefers to use ¢*!"? in place of 2*.

For the definite integral, you specify the interval of values of the variable of
integration using two dots between the endpoints as follows:

> int(2"x*sqgrt(1+4°x),x=0..P1);

12714 (29)2 + In(2" + /1 +2@0) — /2 —In(1 + v/2)

2 In(2)
If you want a decimal approximation to this exact answer, you can ask Maple to
evaluate the last result as a floating point number:

> evalf(%);

56.95542155

Remark Maple defaults to giving 10 significant digits in its floating point numbers
unless you request a different precision by declaring a value for the variable “Digits”:

> Digits := 20; evalf(Pi);

3.1415926535897932385

Suppose we ask Maple to do an integral that we know we can’t do ourselves:

> int(exp(-x"2),%);

1
2 JT erf(x)
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Maple expresses the answer in terms of the error function that is defined by

2 o
erf(x) = ﬁ / e " dt.
0

But observe:
> Int(exp(-x"2),x=-infinity..infinity) = int(exp(-x"2),
x=-infinity..infinity);

oo 2
f e~V dx =7
—0Q

Note the use of the inert Maple command “Int” on the left side to simply print the
integral without any evaluation. The active command “int” performs the evaluation.

Computer algebra programs can be used to integrate symbolically many func-
tions, but you may get some surprises when you use them, and you may have to do
some of the work to get an answer useful in the context of the problem on which
you are working. Such programs, and some of the more sophisticated scientific
calculators, are able to evaluate definite integrals numerically to any desired degree
of accuracy even if symbolic antiderivatives cannot be found. We will discuss
techniques of numerical integration in Sections 6.6—6.8, but note here that Maple’s
evalf (Int()) can always be used to get numerical values:

> evalf(Int(sin(cos(x)),x=0..1));
7386429980

Using Integral Tables

You can get some help evaluating integrals by using an Integral Table, such as the
one in the back endpapers of this book. Besides giving the values of the common
elementary integrals that you likely remember while you are studying calculus, they
also give many more complicated integrals, especially ones representing standard
types that often arise in applications. Familiarize yourself with the main headings
under which the integrals are classified. Using the tables usually means massaging
your integral using simple substitutions until you get it into the form of one of the
integrals in the table.

Use the table to evaluate [ = /
Fl" m V3 - 2t4

Solution This integral doesn’t resemble any in the tables, but there are numerous
integrals in the tables involving ~/a? — x2. We can begin to put the integral into
this form with the substitution t? = u, so that 2¢ d¢ = du. Thus

1 / u
== | ——=d
2) J3-2u?
This is not quite what we want yet; let us get rid of the 2 multiplying the #2 under

the square root. One way to do this is with the change of variable +/2u = x, so that

du = dx/V/2:

1 X
=—— | ——dx
4@/ V3 —x2
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Now the denominator is of the form +/a? — x2 for a = /3. Looking through the
part of the table (in the back endpapers) dealing with integrals involving va? — x>

we find the third one, which says that
2

a X
a? —x2 4+ —sin"'= + C.
2 a

x? x
[ ix=-3
/a2 — 22 2

Thus
1 X 3 X
I=——|—-= 3—x2+—sin*1~——)+C
4[2( 2 2 3
12 3 V212
=——/3 =2+ ——sin™! + .
8 82 3

Many of the integrals in the table are reduction formulas. (An integral appears on
both sides of the equation.) These can be iterated to simplify integrals as in some
of the examples and exercises of Section 6.1.

1

1
Evaluate [ = / ——dx.
0o (2+1)3

Solution The fourth integral in the table of Miscellaneous Algebraic Integrals
says that if n # 1, then

/ dx _ 1 ( x o — 3 dx
@ =2 2D\ @z T )/ (—m)

Using a = 1 and the “+” signs, we have

/ldx_l x1+231dx
o I+x2  2(m—1) \ A +x2) 1|, @2n — )/0 (1 + x2)n-!

_ 1 n 2n—3 1 dx
T 2"n—1  2—1)J, Q+xH)nU

Thus we have

I_i+3f1 dx
T 16 4 Jy (1+x2)2

_ 1.3 1+1/1 dx
16 4\4 2/, 1+x2
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|Exercises 6.4

1. Use Maple or another computer algebra program to check . / dt 8. / dt
any of the integrals you have done in the exercises from 2./312 45 t/3t =5
Sections 5.6 and 6.1-6.3, as well as any of the integrals you

have been unable to do. . . 7 2
X
2. Use Maple or another computer algebra program to evaluate 9. f x(Inx)" dx 10. / x'e dx
the integral in the opening paragraph of this section.
. Use Maple or another computer algebra program to /% — x2
reevaluate the integral in Example 1. 11. / XV 2x — x2dx 12. / ———dx
x

4. Use Maple or another computer algebra program to
reevaluate the integral in Example 2.

dx dx
Use the integral tables to help you find the integrals in Exercises 13. / — 14. / —
5-14. & Py & (V 4x — x2)3 (\/ 4x — X2)4

2

X
. —d
/ Vixi=2 *

B 15. Use Maple or another computer algebra program to evaluate
6. ] (x2+H3dx the integrals in the previous 10 exercises.

Up to this point we have considered definite integrals of the form

b
1 =/ fx)dx,

where the integrand f is continuous on the closed, finite interval [a, b]. Since such
a function is necessarily bounded, the integral I is necessarily a finite number; for
positive f it corresponds to the area of a bounded region of the plane, a region
contained inside some disk of finite radius with centre at the origin. Such integrals
are also called proper integrals. We are now going to generalize the definite
integral to allow for two possibilities excluded in the situation described above:

(i) We may have a = —oo or b = oc or both.
(ii) f may be unbounded as x approaches a or b or both.

Integrals satisfying (i) are called improper integrals of type I; integrals satisfying
(ii) are called improper integrals of type II. Either type of improper integral
corresponds (for positive f) to the area of a region in the plane that “extends
to infinity” in some direction and therefore is unbounded. As we will see, such
integrals may or may not have finite values. The ideas involved are best introduced
by examples.

Improper Integrals of Type |

IR  Find the area of the region A lying under the curve y = 1/x2 and
above the x-axis to the right of x = 1. (See Figure 6.8(a).)

Solution We would like to calculate the area with an integral

o0
d
A:/ =,
1 X




Figure 6.8

|
(a)A=/ —z—dx
10X

R
(b) A= lim / — dx
R—o 1 X

Figure 6.9 The area shaded in
colour is infinite
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(a) (b)

which is improper of type I since its interval of integration is infinite. It is not
immediately obvious whether the area is finite or not; the region has an infinitely
long “spike” along the x-axis, but this spike becomes infinitely thin as x approaches
oo. In order to evaluate this improper integral, we interpret it as a limit of proper
integrals over intervals [1, R] as R — oo. (See Figure 6.8(b).)

© dx , R ax . 1
A= — = lim — = lim | ——
1 X R—o0 1 X R—>o0 X

_ 1
=g (-x+1) =1

Since the limit exists (is finite), we say that the improper integral converges. The
region has finite area A = 1 square unit.

R

1

m Find the area of the region under y = 1/x, above y = 0, and to the

right of x = 1. (See Figure 6.9.)
y

Solution This area is given by the improper integral

% Iy R x R
A= — = lim — = lim Inx| = lim InR = oc.
1 X R—>o0 1 X R—o0 1 R—>x
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We say that this improper integral diverges to infinity. Observe that the region has a
similar shape to the region under y = 1/ x? considered in the above example, but its
“spike” is somewhat thicker at each value of x > 1. Evidently the extra thickness

makes a big difference; this region has infinite area.
B

Improper integrals of type I

If f is continuous on [a, co[, we define the improper integral of f over [a, oo
as a limit of proper integrals:

o0 R
f f@)dx= Jim / £(x)dx.

Similarly, if f is continuous on ]—o0, b], then we define

b b
f f(x)dx = lim / f(x)dx.
—0 R—>~-c0 [Jp

In either case, if the limit exists (is a finite number), we say that the improper
integral converges; if the limit does not exist, we say that the improper integral
diverges. If the limit is 0o (or —o0), we say the improper integral diverges
to infinity (or diverges to negative infinity).

The integral ffzo f(x)dx is, for f continuous on the real line, improper of type I
at both endpoints. We break it into two separate integrals:

o 0 oo
/ f(x)dx=/ f(x)dx+/ fx)dx.
— 00 —0 0

The integral on the left converges if and only if both integrals on the right converge.

[o0]

1
JETIEER vl / dx.
oo 1 +x2

Solution By the (even) symmetry of the integrand (see Figure 6.10), we have

/°° dx _/0 dx +/°° dx
oo 1422 J_ o 14+x2 Jy 1422

R
=2 lim dx
R-oo Jo 14+ x2

=2 lim tan_1R=2<%>=rr.

R—o00

The use of symmetry here requires some justification. At the time we used it we did
not know whether each of the half-line integrals was finite or infinite. However, since
both are positive, even if they are infinite, their sum would still be twice one of them.
Figure 6.10 If one had been positive and the other negative, we would not have been justified
in cancelling them to get O until we knew that they were finite. (00 + 00 = 00, but
00 — oc is not defined.) In any event, the given integral converges to 7.

-




SECTION 6.5:  Improper Integrals 379

oo R
Example 4 / cosxdx = lim cosxdx = lim sin R.
0

R—o¢ Jo R—o0
This limit does not exist (and it is not oo or —o0), so all we can say is that the given
integral diverges. (See Figure 6.11.) As R increases, the integral alternately adds
and subtracts the areas of the hills and valleys but does not approach any unique
limit.

y

Figure 6.11 Not every divergent

improper integral diverges to oo or —oo

Improper Integrals of Type I

INITION H Improper integrals of type IT

If f is continuous on the interval ]a, ] and is possibly unbounded near a, we
define the improper integral

b b
/f(x)dx: 1im+/ f(x)dx.

Similarly, if f is continuous on [a, b[ and is possibly unbounded near b, we
define

b c
/ fx)ydx = l'n})l_f fx)dx.

These improper integrals may converge, diverge, diverge to infinity, or diverge
to negative infinity.

Find the area of the region S lying under y = 1/./x, above the
x-axis, between x = O0and x = 1.

Solution The area A is given by

L |
A=f —dx,
o Vx

which is an improper integral of type II since the integrand is unbounded near
x = 0. The region § has a “spike” extending to infinity along the y-axis, a vertical
asymptote of the integrand, as shown in Figure 6.12. As we did for improper
Figure 6.12  The shaded area is finite | integrals of type I, we express such integrals as limits of proper integrals.
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1 1
= lim / x 2 dx = lim 2x!12| = lim @ - 2/¢0) = 2.
c—~>0+ J. c—0+ ¢ c—>0+

This integral converges, and S has a finite area of 2 square units.

_m

While improper integrals of type 1 are always easily recognized because of the
infinite limits of integration, improper integrals of type II can be somewhat harder
to spot. You should be alert for singularities of integrands and especially points
where they have vertical asymptotes. It may be necessary to break an improper
integral into several improper integrals if it is improper at both endpoints or at points
inside the interval of integration. For example,

f Inix|dx _ 1n|x|dx l/zlnlxldx+ Uln x| dx
J1=x «/l—x 0o ~l—x 12 V1—x '

Each integral on the right is improper because of a singularity of its integrand at
one endpoint.

3 €1 [N  Evaluate each of the following integrals or show that it diverges:

1 1 2 1 1
(a) / —dx, (b) / —_—dx, and ©) f Inxdx.
0o X 0 +2x —x?2 0

Solution
1
1
(a) / —dx = lim —dx = 11m (lnl——lnc)
c—>0+ X c—0
This integral diverges to infinity.

2 1 2
(b) f ———dx:/ —_——dx letu =x — 1,
0 +v2x —x? 0 J1—(x—1)2 du — dx

1
= ————du
./—1 V1 —u?

1
1
=2 ] ————du (by symmetry)
0 1—u?
. ¢ 1
=2 lim ——du
c—=1-Jp 1—u2
=2 lim sinlul =2 lin sin"lc = 7.
c—>1— c—>1—

This integral converges to . Observe how a change of variable can be made
even before an improper integral is expressed as a limit of proper integrals.
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1
(©) / Inxdx = lim Inx dx (See Example 2(a) of Section 6.1
c—0+
for the evaluation of the indefi-
nite integral.)
1

= lim (xInx —x)

c—>0+ ¢
=1lim0—-1—-clnc+c)

>0+

1 _
— —140— lim —¢ ——oo]
c—>04 1/C o0
1/c A

=—1- (by I’Hopital’s Rule)

1

—0r —(1/2)

——1— lim(—¢)=—1+0=—1.
c—>04

The integral converges to —1.

The following theorem summarizes the behaviour of improper integrals of types I
and II for powers of x.

p-integrals
If0 < a < oo, then

; R
e foo o P dx converges to 71 ifp>1
, I diverges to oo if p<1i

" - at=r.
®) f e converges to =7 ifp<l
0 : divergesto oo if p=1.

PROOF We prove part (b) only. The proof of part (a) is similar and is left as an
exercise. Also, the case p = 1 of part (b) is similar to Example 6(a) above, so we
need consider only the cases p < 1 and p > 1. If p < 1, then we have

a a
x Pdx = lim xPdx
0 c—>0+ ¢

x—p+1 a

lim

>0+ —p + 1 c
. al=? — c1-p al=?

= lim =

—~0+ 1—p 1—p

because 1 — p > 0. If p > 1, then

a a
/ x Pdx = lim xPdx
0

=0+ f,
) x—p+1 a
= lim
>0+ —p + 1 .
) e _ 4= (p—D
=lim —— = oo0.
c—>0+ p—1
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Figure 6.13

The integrals in Theorem 2 are called p-integrals. It is very useful to know when
they converge and diverge when you have to decide whether certain other improper
integrals converge or not and you can’t find the appropriate antiderivatives. (See
the discussion of estimating convergence below.) Note that fooo x~ 7 dx does not
converge for any value of p.

Remark 1If f is continuous on the interval [a, b] so that f: f(x)dx is a proper
definite integral, then treating the integral as improper will lead to the same value:

b b c
lim/ f(x)dx:/ fx)dx = lirgl*/ £(x)dx.

c—>a+

This justifies the definition of the definite integral of a piecewise continuous function
givenin Section 5.4. To integrate a function defined to be different continuous func-
tions on different intervals, we merely add the integrals of the various component
functions over their respective intervals. Any of these integrals may be proper or
improper; if any are improper, all must converge or the given integral will diverge.

2 ‘
Evaluate/ f(x)dx, where f(x) = [ 1/\/)1? if0<x=<1
0 X =

ifl <x <2.

Solution The graph of f is shown in Figure 6.13. We have

2 ldx 2
fo f(x)dx=/0 ﬁ—i-/l(x—l)dx

. U ax n x2
= lim — — =
=0+ Jo x 2

the first integral on the right is improper but convergent (see Example 5 above) and
the second is proper.

2—2+(2 - lin)=2
- 2 T

Estimating Convergence and Divergence

When an improper integral cannot be evaluated by the Fundamental Theorem of
Calculus because an antiderivative can’t be found, we may still be able to deter-
mine whether the integral converges by comparing it with simpler integrals. The
following theorem is central to this approach.

A comparison theorem for integrals

Let —o0 < a < b < 00, and suppose that functions f and g are continuous on the
interval Ja, [ and satisfy 0 < f(x) < g(x). If fab g(x) dx converges, then so does

[ f(x)dx,and

b b
/f(x)dxsf g(x) dx.

Equivalently, if fab f(x) dx diverges to oo, then so does [ b o(x)dx.
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PROOF Since both integrands are nonnegative, there are only two possibilities
for each integral: it can either converge to a nonnegative number or diverge to oc.
Since f(x) < g(x) on (a,b), it follows by Theorem 3(e) of Section 5.4 that if
a<r <s <b,then

/sf(x)dx < /Sg(x)dx.

This theorem now follows by taking limits as r — a+ and s — b—.

g
o0 2

3 ETLTIER  Show that / e™* dx converges, and find an upper bound for its

0

value.

Solution We can’t integrate e, but we can integrate ¢ *. We would like to
use the inequality e < e, but this is only valid for x > 1. (See Figure 6.14.)
Therefore we break the integral into two parts.

On [0, 1] we have 0 < e~ <1,so0

1 1
Y O<fe_x2dx§fdx=1.
0 0

2

2 _
On[1, 0o) we have x2 > x, 50 —x? < —x and 0 < ™% < e¢™*. Thus,

o0 ) %) e R
0</ e ¥ dx 5[ e *dx = lim
1 1

R—so0 —1

1
— 1 1 1 _1
_Rgr;o e eR)] ¢

oo
2 . .
Hence, / e dx converges and its value is not greater than 1 + (1/¢).
0

Figure 6.14 Comparing e~ and

e—A

We remark that the above integral is, in fact, equal to % 7, although we cannot

prove this now. See Section 14.4.

For large or small values of x many integrands behave like powers of x. If so,
they can be compared with p-integrals.

) ®© dx
(3 €T  Determine whether / ———— converges.
0

Vx +x3

Solution The integral is improper of both types, so we write

=L +15.

/°° dx __/1 dx +/°° dx
0 x4+ x3 0 vx+x3 1 x+x3
On (0, 1] we have v/x + x3 > /x, so

I < f dx (by Th 2)
1 — = y Theorem 2).
0 VX
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On [1, 0o) we have v/x + x3 > /x3, s0
[ee]

L < / xdx =2 (by Theorem 2).
1

Hence, the given integral converges and its value is less than 4.

|Exercises 6.5

In Exercises 1-22, evaluate the given integral or show that it
diverges.

R 0 1
1. —d 2. ——d
/2 -1 f3 ox—123
o0 -1
dx
—2x
/ e ““dx 4. f 21
0 —00
5 ! dx
. . (]C + 1)2/3 0 a2 — X

1
1
/ (I—X)‘/3 _[.. xT—x

d o0
9./ cosx x23 10. /
o (1 —sinx)?/ 0

w

=)

=~
o0

o0
11. _ 12.
/0 Vx(l —x) /0 1 +2x2
o d
13. _xax 14. secx dx
o (1+2x2)3/2 0
/2 © 4
15. / tan x dx 16. / a
0 xlnx
e [0 0]
17. / dx 18. / dx
1 x+/Inx . x(Inx)?
o0 oo
19. / L dx 20. / = ax
oo Lt x oo 1 x
o0 o0
21. / xe ¥ dx 22. / e~ ldx
—oo —00

23. Find the area below y = 0, above y = Inx, and to the right
of x =0.

24, Find the area below y = e™*, above y = ¢~ 2*, and to the
right of x = 0.

25. Find the area of a region that lies above y = 0, to the right of
4 2

2x+1 x+42
26. Find the area of the plane region that lies under the graph of
y = x~Ze~1/% above the x-axis, and to the right of the

Tl

x = 1, and under the curve y =

27.

28.

29.

Prove Theorem 2(a) by directly evaluating the integrals
involved.

Evaluate [, (x sgnx)/(x + 2) dx. Recall that

sgnx = x/|x|.

Evaluate f02 x2 sgn (x — 1) dx.

In Exercises 30—41, state whether the given integral converges or
diverges, and justify your claim.

30.

32.

34.

36.

= 38.

* 40,

* 42,

* 43,

T2 s [
2 ax . e
o X +1 o 1+Vx
[e.¢] o0
/ x“/—dx 33. / e dx
1 x
[4
35. d
/ f+x2 /—1 1
F A o0 .
/ T ax «37. / lsmle dx
0 X 0 X
/ﬂ2 dx 3 /]‘[/2 p
o % 30, cscxdx
o 1—rcosyx —n2
© dx a1 °° dx
_ax « 41 ax
h  /xInx o xer

1
Given that fo e dx = /7, evaluate

(a)/ x2e™ dx and (b)/ x*e=" dx.

If f is continuous on [a, b], show that

hm/f(x)dx—-/ fx)dx.

Hint: a continuous function on a closed, finite interval is
bounded: there exists a positive constant K such that

| f(x)| < K for all x in [a, b]. Use this fact, together with
parts (d) and (f) of Theorem 3 of Section 5.4, to show that

b b
lim+ f(x)dx — fx)dx} =0.

ﬂ |



Similarly, show that

c b
1irlr)l_/ f(x)dx:/ f(x)dx.

» 44, (The gamma function) The gamma function I'(x) is
defined by the improper integral

o0
T'(x) :/ Ve dr.
0

(T is the Greek capital letter gamma.)

(a) Show that the integral converges for x > 0.
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(b) Use integration by parts to show that T'(x + 1) = xI'(x)
forx > 0.

(c) Show thatT’'(n + 1) =nlforn=0,1,2,....

(d) Given that fooo e dx = %ﬁ, show that F(%) =J7
and F(%) = %ﬁ .

In view of (c), I'(x + 1) is often written x! and regarded as a

real-valued extension of the factorial function. Some

scientific calculators (in particular, HP calculators) with the

factorial function n! built in actually calculate the gamma

function rather than just the integral factorial. Check

whether your calculator does this by asking it for 0.5!. If you
get an error message, it’s not using the gamma function.

Most of the applications of integration, within and outside of mathematics, involve

the definite integral

b
I :f fx)dx.

Thanks to the Fundamental Theorem of Calculus, we can evaluate such definite
integrals by first finding an antiderivative of f. This is why we have spent con-
siderable time on developing techniques of integration. There are, however, two
obstacles that can prevent our calculating 7 in this way:

(i) Finding an antiderivative of f in terms of familiar functions may be impossible,
or at least very difficult.

(i) We may not be given a formula for f(x) as a function of x; for instance, f(x)
may be an unknown function whose values at certain points of the interval
[a, b] have been determined by experimental measurement.

In the next two sections we investigate the problem of approximating the value of
the definite integral / using only the values of f(x) at finitely many points of [a, b].
Obtaining such an approximation is called numerical integration. Upper and lower
sums (or, indeed, any Riemann sum) can be used for this purpose, but these usually
require much more calculation to yield a desired precision than the methods we
will develop here. We will develop three methods for evaluating definite integrals
numerically: the Trapezoid Rule, the Midpoint Rule, and Simpson’s Rule. All of
these methods can be easily implemented on a small computer or using a scientific
calculator. The wide availability of these devices makes numerical integration
a steadily more important tool for the user of mathematics. Some of the more
advanced calculators have built-in routines for numerical integration.

All the techniques we consider require us to calculate the values of f(x) at a
set of equally spaced points in [a, #]. The computational “expense” involved in
determining an approximate value for the integral / will be roughly proportional
to the number of function values required, so that the fewer function evaluations
needed to achieve a desired degree of accuracy for the integral, the better we will
regard the technique. Time is money, even in the world of computers.
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Figure 6.15 The area under
y = f(x) is approximated by the sum
of the areas of n trapezoids

y=fx)

Yo

pd ',’yl

X0 X1

Figure 6.16 The trapezoid has area
yih+ 300 = yDh = 3h(y0 + y1)

The Trapezoid Rule
We assume that f (x) is continuous on [a, b] and subdivide [a, b] into n subintervals
of equal length h = (b — a)/n using the n + 1 points

xo=da, xi=a+h, xx2=a+2h, ..., X =a+nh=>b.
We assume that the value of f(x) at each of these points is known:

yo=f(x0), yi=/fx), y=f 2, -.oi Yu= S

h

a=xy X1 X2 Xn-1 x,=b

The Trapezoid Rule approximates fa b f(x)dx by using straight line segments be-
tween the points (x;_(, y;—1) and (x;, ¥;), (1 < j < n), to approximate the graph
of f, as shown in Figure 6.15, and summing the areas of the resulting n trapezoids.
A trapezoid is a four-sided polygon with one pair of parallel sides. (For our dis-
cussion we assume f is positive so we can talk about “areas,” but the resulting
formulas apply to any continuous function f.)

The first trapezoid has vertices (xg, 0), (xo, yo), (x1, ¥1), and (x1, 0). The two
parallel sides are vertical and have lengths yy and y;. The perpendicular distance
between them is 2 = x; — x¢. The area of this trapezoid is & times the average of
the parallel sides:

Yo+
h
2

square units.

This can be seen geometrically by considering the trapezoid as the nonoverlapping
union of a rectangle and a triangle; see Figure 6.16. We use this trapezoidal area to
approximate the integral of f over the first subinterval [xg, x,]:

X1

f(x)dx%hyogyl.

n
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We can approximate the integral of f over any subinterval in the same way:

/1 f(x)dx%h&:%—&, (1<j<n).
Xj—1

J
It follows that the original integral I can be approximated by the sum of these
trapezoidal areas:

b
+ + + wmt + Y
/f(x)dx%h(yo nntTrn RER Rl Th y)

2 2 2 2

1 1
=h<5yo+y1+yz+y3+~~+yn_1+5yn>.

The Trapezoid Rule

The n-subinterval Trapezeoid Rule approximation to fab f(x)dx,denoted T,,
is given by

1
T—h< }’0+)’1+y2+)’3+ +yn—1+§yn>~

We now illustrate the Trapezoid Rule by using it to approximate an integral whose
value we already know:

2
I=/ ldx=ln2=0.69314718....
1 X

(This value, and those of all the approximations quoted in these sections, were
calculated using a scientific calculator.) We will use the same integral to illustrate
other methods for approximating definite integrals later.

IR  Calculate the Trapezoid Rule approximations 74, Ty, and Ty for
2
1
I = f —dx.
1 X

Solution Forn =4 wehaveh = (2—1)/4 =1/4;forn = 8 we have h = 1/8;
for n = 16 we have h = 1/16. Therefore,

=1 1(1)+i+g+i+}-<l)]=0.69702381...
4 5737772\2

Ty=1 (1)+8+4+—8—+2+E+f+§+1(1)]
8|2 9757113713 15

=% 4T4+2+18—1+§+185]=0.69412185...

Tl(,=l[sg+—6+9+§+§+ﬁ+5+§+ﬂ
16 19 23725 27" 29" 31

= 0.69339120....
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Note how the function values used to calculate T, were reused in the calculation of
T3, and similarly how those in T3 were reused for Tis. When several approximations
are needed, it is very useful to double the number of subintervals for each new

calculation, so that previously calculated values of f can be reused.
||

X
Figure 6.17 The trapezoid areas are
greater than the area under the curve if
the curve is concave upward

Figure 6.18 The Midpoint Rule

approximation M, to fa b f(x)dx is the
Riemann sum based on the heights to
the graph of f at the midpoints of the
subintervals of the partition

All Trapezoid Rule approximationsto I = |, 12(1 /x) dx are greater than the true value
of I. This is because the graph of y = 1/x is concave up on [1, 2], and therefore
the tops of the approximating trapezoids lie above the curve. (See Figure 6.17.)

We can calculate the exact errors in the three approximations since we know
that / = In2 = 0.69314718 ... (Remember that the error in an approximation is
always taken to be the true value minus the approximate value.)

I — T, =0.69314718 ... - 0.69702381 ... = —0.00387663 . ..
I — T3y =0.69314718 ... — 0.69412185 ... = —0.00097467 . ..
I — T =0.69314718 ... — 0.69339120... = —0.00024402.. . ..

Observe that the size of the error decreases to about a quarter of its previous value
each time we double n. We will show below that this is to be expected for a
“well-behaved” function like 1/x.

Example 1 is somewhat artificial in the sense that we know the actual value of
the integral so we really don’t need an approximation. In practical applications of
numerical integration we do not know the actual value. It is tempting to calculate
several approximations for increasing values of n until the two most recent ones
agree to within a prescribed error tolerance. For example, we might be inclined to
claim that In2 = 0.69 . .. from a comparison of 74 and Tg, and further comparison
of Ty and Ty suggests that the third decimal place is probably 3: I ~ 0.693.. ..
Although this approach cannot be justified in general, it is frequently used in
practice.

y

y=f(.y
/

my, X



Xj—1 m; Xj

Figure 6.19 The Midpoint Rule
error, the area shaded in colour, is
opposite in sign and about half the size
of the Trapezoid Rule error, the area
shaded in grey
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The Midpoint Rule

A somewhat simpler approximation to | b f(x)dx, based on the partition of [a, b]
into n equal subintervals, involves forming a Riemann sum of the areas of rectangles
whose heights are taken at the midpoints of the n subintervals. (See Figure 6.18.)

The Midpoint Rule
Ifh = (b—a)/n,letm; =a+(j — ) hforl < j < n. The Midpoint Rule
approximation to f: f(x)dx, denoted M,,, is given by

M, = h(f(m) + fma) + -+ f(mn)) =h Y _ f(m)).
j=1

m Find the Midpoint Rule approximations M4 and Mj for the integral

2
I= f — dx and compare their actual errors with those obtained for the Trapezoid
1 X

Rule approximations above.

Solution To find My, the interval [1, 2] is divided into four equal subintervals,

l,é, ég zz and z,z.
4 42 24 4

The midpoints of these intervals are 9/8, 11/8, 13/8, and 15/8, respectively. The
midpoints of the subintervals for Mg are obtained in a similar way. The required
Midpoint Rule approximations are

18 8 8 8
My=-|-4— 4 — +— | =0.69121989...
* 4[9+11+13+15} ?
116 16 16 16 16 16 16 16
M=~ |0 0 0 16 16 16 16 161 69266055,
s 8[17+19+21+23+25+27+29+31] 0-6926

The errors in these approximations are

I —M4=0.69314718 ... —0.69121989... = 0.00192729...
I — Mg =0.69314718 ... — 0.69266055 ... = 0.00048663 . ..

These errors are of opposite sign and about half the size of the corresponding
Trapezoid Rule errors I — Ty and I — Tg. Figure 6.19 suggests the reason for this.
The rectangular area hf (m;) is equal to the area of the trapezoid formed by the
tangent line to y = f(x) at (m;, f(m;)). The shaded region above the curve is the
part of the Trapezoid Rule error due to the jth subinterval. The shaded area below
the curve is the corresponding Midpoint Rule error.

One drawback of the Midpoint Rule is that we cannot reuse values of f calculated
for M, when we calculate M,,. However, to calculate 75, we can use the data
values already calculated for 7,, and M,,. Specifically,
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T2n = %(Tn + Mn) -

A good strategy for using these methods to obtain a value for an integral / to a
desired degree of accuracy is to calculate successively:

T, + M T, + M-
Tn’ an T2n = "—2_11’ M2ns T4n = —nz—nv M4n’

until two consecutive terms agree sufficiently closely. If a single quick approxima-
tion is needed, M, is a better choice than T,.

Error Estimates

The following theorem provides a bound for the error in the Trapezoid and Midpoint
Rule approximations in terms of the second derivative of the integrand.

Error estimates for the Trapezoid and Midpoint Rules

If f has a continuous second derivative on [a, b] and satisfies | f”(x)| < K there,
then

_kKe-a) , _ K(b—a)3’
Y 12n2

i K(b-a) , Kb-a)?
/af(x)dx"M”ﬁ % T T

b
f F@dx—T,

where i = (b — a)/n. Note that these error bounds decrease like the square of the
subinterval length as n increases.

PROOF We will prove only the Trapezoid Rule error estimate here. (The one for
the Midpoint Rule is a little easier to prove; the method is suggested in Exercise 14
below.) The straight line approximating y = f(x) in the first subinterval [xg, x;] =
[a, a + h] passes through the two points (xg, yo) and (x;, y;). Its equation is
y = A+ B(x — xq), where

A=y and Bz}’l—)’o:)’l—yo.
X1 — Xo h

Let the function g(x) be the vertical distance between the graph of f and this line:
y=fx) gx) = f(x) — A— B(x — xo).

Since the integral of A + B(x — xg) over [xg, x] is the area of the first trapezoid,
which is A(yo + y1)/2 (see Figure 6.20), the integral of g(x) over [xg, x;] is the
error in the approximation of fxf)‘ f(x) dx by the area of the trapezoid:

X X1
" f f(x)dx—hw =/ g(x)dx.
Xo Xp

y= A+ BG—x)
Yo '

'
'
I
1
1
'
;
X

X0 X1

Now g is twice differentiable, and g”(x) = f"(x). Also g(xp) = g(x;) = 0. Two
Figure 6.20 integrations by parts (see Exercise 36 of Section 6.1) show that

/ (x = x0)(r1 — ) f(x) dx = f (x — x0)(¥1 — %) ¢"(x) dx

= -2 /Xl gx)dx.

X0
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By the triangle inequality for definite integrals (Theorem 3(f) of Section 5.4)

/ Fooydx — }’0+)’1

e
<3 / (= x0)(x1 — ) | f"(0)] dx

K [m
< 5 / (—x* + (xo + x1)x — xox1) dx

]

K \ \
K —xr = Ko,
1T = 1

A similar estimate holds on each subinterval [x;_;, x;] (1 < j < n). Therefore,

b
]f(x)dx—T (f F)dx — y"”’)‘

_Z_h3 h3=K(b_a)h2
12 '

sincenh =b —a.

We illustrate this error estimate for the approximations of Examples 1 and 2 above.

m Obtain bounds for the errors for Ty, Tz, Tis, M4, and Mg for
7

1

/1

I = —dx.
x

Solution If f(x) = 1/x, then f'(x) = —1/x>and f"(x) = 2/x3. On[1,2] we
have | f”(x)| < 2, so we may take K = 2 in the estimate. Thus,

22-1) (1\?
I — Tyl < ( )(Z> =0.0104...,

12
22-1) [(1\?

lI—M4|5—(ﬁ—)<Z) —0.0052 ...,
22-1) [1)*

I =Tsl < =) =00026. ..,
2(2

1wyl < 220 )<8) —0.0013....
22-1) [ 1)\?

1= Tiel = 22 )(E> — 0.00065 ...

The actual errors calculated earlier are considerably smaller than these bounds,
because | f”(x)]| is rather smaller than K = 2 over most of the interval [1, 2].
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Remark Error bounds are not usually as easily obtained as they are in Example 3.
In particular, if an exact formula for f(x) is not known (as is usually the case if
the values of f are obtained from experimental data), then we have no method
of calculating f”(x), so we can’t determine K. Theorem 4 is of more theoretical
than practical importance. It shows us that, for a “well-behaved” function f, the
Midpoint Rule error is typically about half as large as the Trapezoid Rule error and
that both the Trapezoid Rule and Midpoint Rule errors can be expected to decrease
like 1/n? as n increases; in terms of big-O notation,

1 1
I=Tn+0<—2) and I=M,,+0<—3) asn — oo.
n n

Of course, actual errors are not equal to the error bounds, so they won’t always be
cut to exactly a quarter of their size when we double n.

| Exercises 6.6

In Exercises 1-4, calculate the approximations Ty, My, Ty, Mg, represents 10 km. Use the Trapezoid Rule to obtain two
and Tj¢ for the given integrals. (Use a scientific calculator or estimates for the area of the region.
computer spreadsheet program.) Also calculate the exact value

of each integral, and so determine the exact error in each vt J
approximation. Compare these exact errors with the bounds for 8
the size of the error supplied by Theorem 4. 7 v N
2 1 6
1.I=/(1+x2)dx 2.I=/ e “dx
o o 5
/2 L 4
23, [ = sinx dx =34, 1= | 2
B 0 i 0 1+ x2 31
5. Figure 6.21 shows the graph of a function f over the 2
interval [1, 9]. Using values from the graph, find the N
Trapezoid Rule estimates T4 and Ty for f 19 fx)dx. !
¥4 ( 2 3 4 5 6 7 8 9 «x
8 i,
Yy A1 1IN Figure 6.22
7 - =
6 8. Find a Midpoint Rule estimate for the area of the region in
the previous exercise.
5
4 Table 1.
3 x fx) x fx)
5 0.0 1.4142 0.1 1.4124
0.2 1.4071 0.3 1.3983
14 0.4 1.3860 0.5 1.3702
, 0.6 1.3510 0.7 1.3285
1 2 3 4 5 0.8 1.3026 0.9 1.2734
) 1.0 1.2411 1.1 1.2057
Figure 6.21 12 1.1772 1.3 1.1258
6. Obtain the best Midpoint Rule approximation that you can }2 égzg L5 1.0348

for [ f(x) dx from the data in Figure 6.21.
i 16 .
7. The map of a region is traced on the grid in Figure 6.22 9. Find Ty, My, Tg, Mg, and Tys for [, f(x) dx for the

where 1 unit in both the vertical and horizontal directions f“m“ﬂ" f wnﬂﬂu U[ﬂ”gg ﬂ[@ QIUEH H] Hme l




12.

13.
+ 14,

. Find the approximations Mg and T}¢ for fol e dx. Quote

a value for the integral to as many decimal places as you feel
are justified.
/2 Sinx

. Repeat Exercise 10 for fo —dx.
X

(Assume the integrand is 1 at x = 0.)
Compute the actual error in the approximation

fol x2dx =~ Ty and use it to show that the constant 12 in the
estimate of Theorem 4 cannot be improved. That is, show
that the absolute value of the actual error is as large as
allowed by that estimate.

Repeat the previous exercise for M.
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approximation (Theorem 4 of Section 3.5) to show that

K
|f@) = fm1) = f/m)x —my)| < —(x — m1)?.

Use this inequality to show that

/ fx)dx — f(mx)h'
Xo

/ (f&) = £m1) = f'om1)(x — m1))dx

X0

<K

Prove the error estimate for the Midpoint Rule in Theorem 4 =5
as follows: If x| — xg = h and m is the midpoint of
[xo, x11, use the error estimate for the tangent line

Complete the proof the same way used for the Trapezoid
Rule estimate in Theorem 4.

The Trapezoid Rule approximation to fa b f(x)dx results from approximating the
graph of f by straight line segments through adjacent pairs of data points on the
graph. Intuitively, we would expect to do better if we approximate the graph by
more general curves. Since straight lines are the graphs of linear functions, the
simplest obvious generalization is to use the class of quadratic functions, that is, to
approximate the graph of f by segments of parabolas. This is the basis of Simpson’s
Rule.

Suppose that we are given three points in the plane, one on each of three equally
spaced vertical lines, spaced, say, / units apart. If we choose the middle of these
lines as the y-axis, then the coordinates of the three points will be, say, (—h, y.),
(0, ym), and (h, yg), as illustrated in Figure 6.23.

Constants A, B, and C can be chosen so that the parabolay = A + Bx + Cx?
passes through these points; substituting the coordinates of the three points into the

y .
o v = A+ BxtCi equation of the parabola, we get
T yL = A — Bh + Ch?
(h, yo) ym=A = A=yy and 2Ch* =y, —2ym + .
. § yr = A+ Bh+ Ch?
Ym :
$(—h, y1) | R Now we have
P YL | 2 h
! . B C 2
; ; / (A+Bx+Cx2)dx=(Ax+—x2+—x3> =2Ah+ = Ch?
—h Box —h 2 3 _n 3
Figure 6.23 Fitting a quadratic

1
graph through three points with equal =h (ZYM + 3 L —2yu + yR))

horizontal spacing

h
=3 (yL +4ym + yr).

Thus, the area of the plane region bounded by the parabolic arc, the interval of
length 2/ on the x-axis, and the left and right vertical lines is equal to (2/3) times
the sum of the heights of the region at the left and right edges and four times the
height at the middle. (It is independent of the position of the y-axis.)
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Now suppose that we are given the same data for f as we were given for the
Trapezoid Rule, that is, we know the values y; = f(x;) (0 < j <nm)atn+1
equally spaced points

xo=a, xi=a-+h, xx=a-+2h, ..., xX,=a+nh=b,

where h = (b—a)/n. We can approximate the graph of f over pairs of the subinter-
vals [x;_1, x;] using parabolic segments, and use the integrals of the corresponding
quadratic functions to approximate the integrals of f over these subintervals. Since
we need to use the subintervals two at a time, we must assume that » is even. Using
the integral computed for the parabolic segment above, we have

X;

2 h

fx)dx = 3 (yo +4y1 + ¥2)
Xo

X4

h
fx)dx =~ 3 (2 +4y3 + ya)

X2

Xn h
f fx)dx =~ 3 Yn—2 + 4Yn—1 + yn).
Xn—2

Adding these n/2 individual approximations we get the Simpson’s Rule approxi-
mation to the integral fab f(x)dx.

Simpson’s Rule

The Simpson’s Rule approximation to fab f(x) dx based on a subdivision of
[a, b] into an even number » of subintervals of equal length 7 = (b — a)/n is
denoted S, and is given by:

b
/ fX)dx =~ S,

(yo+4y1+ 2y, +4y3+ 29+ - +2¥52 + 4yuct + Yu)

S WS

=% (y “ends” T 4Yodds” + 2y“evens”)~

W

Note that the Simpson’s Rule approximation S, requires no more data than does the
Trapezoid Rule approximation 7,,; both require the values of f(x) atn + 1 equally
spaced points. However, Simpson’s Rule treats the data differently, weighting
successive values either 1/3,2/3, or 4/3. As we will see, this can produce a much
better approximation to the integral of f.

21
Calculate the approximations Sy, Sg, and Si¢ for I = —dx
1 X
and compare them with the actual value / = In2 = 0.69314718.. . ., and with the
values of Ty, Ty, and Tj¢ obtained in Example 1 of Section 6.6.

Solution We calculate
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4 2 4\ 1
4 SV4a(Z) +2 | =0.69325397....
[1+4(5)+2(3)+ (7)+2} 9

1
12

SN (PR YL SIS
24 9 11 13 15

4 2 4
2(2+24+2)] =069315453 ...,
+ <5+3+7)]

16 16 16 16 16 16 16 16
Tt oty TmTas Tar Ty T

17 21 723725 "27 " 29 " 31
8 4 8 2 8 4 8
22+ 4+ 2 24—+ 24+ 2 )| =0.69314765... ..
+ (9+5+11+3+13+7+15)]
The errors are
I — Sy =0.69314718. .. — 0.69325397 ... = —0.00010679,
I — S = 0.69314718 ... — 0.69315453 ... = —0.00000735,
I — 816 = 0.69314718 ... — 0.69314765 ... = —0.00000047.

These errors are evidently much smaller than the corresponding errors for the
Trapezoid or Midpoint Rule approximations.
|

Remark Simpson’s Rule §,, makes use of the same 2n + 1 data values that T,
and M, together use. It is not difficult to verify that

e T AT, — T,

Figure 6.19 and Theorem 4 in Section 6.6 suggest why the first of these formulas
ought to yield a particularly good approximation to /.

Obtaining an error estimate for Simpson’s Rule is harder than for the Trapezoid
Rule. We state the appropriate estimate in the following theorem, but we do not
attempt any proof. Proofs can be found in textbooks on numerical analysis.

Error estimate for Simpson’s Rule

If f has a continuous fourth derivative on the interval [a, b], satisfying
| F@(x)| < K there, then

_K®-a,, Kb-a

.
[ rs-s)=

130 - 180

where h = (b —a)/n.

Observe that, as n increases, the error decreases as the fourth power of & and, hence,
as 1/n*. Using the big-O notation we have

b
/ f(x)dx:S,,+0(i4> asn — oo.
a n
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This accounts for the fact that S, is a much better approximation thanis 7, provided
that / is small and | £ (x)| is not unduly large compared with | f”(x)|. Note also
that for any (even) n, S, gives the exact value of the integral of any cubic function
f(x) = A+ Bx + Cx> + Dx?; f@(x) = 0 identicaily for such f, so we can take
K = 0 in the error estimate.

IS  Obtain bounds for the absolute values of the errors in the approxi-
mations of Example 1.

Solution 1If f(x) = 1/x, then
4 1 " 2 6 24
fo=-5  fw=5 [Po=-5 o=

Clearly, | f®(x)| < 24 on [1,2], so we can take K = 24 in the estimate of
Theorem 5. We have

242 -1 /1\*

[I — 84 < —'(170—) (Z) ~ (0.00052083,
242 1) [1\*

1 — S| < (1—80—) <§) ~ 0.00003255,
242-1) (1\* _

[ — S| < T Tg ~ (0.00000203.

Again we observe that the actual errors are well within these bounds.

A function f satisfies | f*(x)| < 7 on the interval [1, 3], and the
values f(1.0) = 0.1860, f(1.5) = 0.9411, £(2.0) = 1.1550, f(2.5) = 1.4511,
and f(3.0) = 1.2144. Find the best possible Simpson’s Rule approximation to
1= 13 f(x)dx, based on these data. Give a bound for the size of the error, and
specify the smallest interval you can that must contain the value of /.

Solution We take n = 4, sothath = (3 — 1)/4 = 0.5, and we obtain

3
I=/ fx)dx
1

0.5
A Sy = ?(0.1860—% 4(0.9411 4 1.4511) + 2(1.1550) + 1.2144)
=22132.

Since | f® (x)| < 7on [1, 3] we have

73 - 1)

4
130 (0.5)" < 0.0049.

[ — 84] <

I must therefore satisfy

22132 -0.0049 < I < 2.21324+0.0049 or 22083 <[ < 2.2181.
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|Exercises 6.7

In Exercises 1-4, find Simpson’s Rule approximations S4 and Sg M, refer to the appropriate Trapezoid and Midpoint Rule

for the given functions. Compare your results with the actual approximations. Deduce that Sy, = 4Ty — Ty '

values of the integrals and with the corresponding Trapezoid 3

Rule approximations obtained in Exercises 14 of Section 6.6. B 9. Find Ss, Sg, and Sy for f01-6 f(x) dx for the function f
whose values are tabulated in Exercise 9 of Section 6.6.

1
2. I = f e *dx ] 10. Find the Simpson’s Rule approximations Sg and S;6 for
0

2
=R 1:/ (1+x%)dx
0

/2
B3 1= inxd —
i ‘/(; Sinx dx 1+ x2

5. Find the Simpson’s Rule approximation Sg for the integral
in Exercise 5 of Section 6.6.

fol e dx. Quote a value for the integral to the number of
U dx decimal places you feel is justified based on comparing the
4. I = / two approximations.
0

* 11. Compute the actual error in the approximation

fol xtdx ~ S5 and use it to show that the constant 180 in

. . N the estimate of Theorem 5 cannot be improved.
6. Find the best Simpson’s Rule approximation that you can for p

the area of the region in Exercise 7 of Section 6.6. %12, Since Simpson’s Rule is based on quadratic approximation,

it is not surprising that it should give an exact value for an
integral of A 4+ Bx + Cx2. It is more surprising that it is
exact for a cubic function as well. Verify by direct

, where T, and calculation that fol Bdx = 5.

7. Use Theorem 5 to obtain bounds for the errors in the
approximations obtained in Exercises 2 and 3 above.
Ty +2M, _ 2T, + Mp

8. Verify that $;, =

3 3

The numerical methods described in Sections 6.6 and 6.7 are suitable for finding
approximate values for integrals of the form

b
1 =/ fx)dx,

where [a, b] is a finite interval and the integrand f is “well-behaved” on [a, b]. In
particular, / must be a proper integral. There are many other methods for dealing
with such integrals, some of which we mention later in this section. First, however,
we consider what can be done if the function f isn’t “well-behaved” on [a, b]. We
mean by this that either the integral is improper or f doesn’t have sufficiently many
continuous derivatives on [a, b] to justify whatever numerical methods we want to
use.

The ideas of this section are best presented by means of concrete examples.

1
IR How can you evaluate the integral I = / Vx " dx numerically?
0

Solution Although I is a proper integral, with integrand f(x) = /x e* satisfying
f(x) > 0 as x — 0+, nevertheless, the standard numerical methods can be
expected to perform poorly for I because the derivatives of f are not bounded near
0. This problem is easily remedied; just make the change of variable x = ¢? and
rewrite [ in the form

1
I =2f 2 dt,
0

whose integrand g(t) = ¢* ¢’ has bounded derivatives near 0. The latter integral
can be efficiently approximated by the methods of Sections 6.6 and 6.7.

|
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Approximating Improper Integrals

. cosx .
m Describe how to evaluate I = dx numerically.
o x

Solution The integral is improper, but convergent because, on [0, 1],

0 cosx _ 1 d Udx 5
< < — an — =2
VT Jx 0 X
. . cos x . .
However, since lim,_, o+ 7_— = 00, we cannot directly apply any of the techniques
x
developed in Sections 6.6 and 6.7. (¥p is infinite.) The substitution x = t? removes

this difficulty:
1 2 1
I=f cos 2tdt=2/ cost> dt.
0 t 0

The latter integral is not improper and is well-behaved. Numerical techniques can
be applied to evaluate it.

_—u

o dx )
m Show how to evaluate ] = / ———— by numerical
0o V24+x4 x4

means.

Solution Here the integral is improper of type I; the interval of integration is
infinite. Although there is no singularity at x = 0, it is still useful to break the
integral into two parts:

I—/l dx +/°° dx 4
0 V24 x24 x4 1 v2+x2+x4_ ! &

I is proper. In I, make the change of variable x = 1/t:
! dt ! dt
S S A e W SOV v
t t
0 2 /y FRERL 0 ++
t t

This is also a proper integral. If desired, I; and I; can be recombined into a single
integral before numerical methods are applied:

1
1 1
I=[( + )dx
0 \W2+x2+x% V2xA+x24+1

u

Example 3 suggests that when an integral is taken over an infinite interval, a change
of variable should be made to convert the integral to a finite interval.

Using Taylor's Formula

Taylor’s Formula (see Section 4.8) can sometimes be useful for evaluating integrals.
Here is an example.
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E XN Use Taylor’s Formula for f(x) = e*, obtained in Section 4.8, to
evaluate the integral fol e* dx to within an error of less than 10~%,

Solution In Example 4 of Section 4.8 we showed that

xt X3 x"
— X ST S T
f(X)—€—1+X+2!+3!+ +n!+En(X),
where
X
e
En — n+l1
O =G

for some X between Oand x. f0 < x < 1, then 0 < X < 1,s0€X < ¢ < 3.
Therefore

3
E,(x)| < n+l
|En(x)| < PEETR

Now replace x by x? in the formula for e* above and integrate from 0 to 1:

1 2 1 x4 x2n 1
/ex dx:/ (1+x2+_++_ dx+/ En(xz)dx
0 0 2! n! 0

1 1 !
S . I I En(x?)dx.
t3tseat +(2n+1)n!+,/0 () dx

We want the error to be less than 1074, so we estimate the remainder term:

1 2 U s 3 4
E,(x9)dx| < x A= < 1077,

/0 W) dx| < (n+1)!/0 (n+1!2n+3)

provided (2n +3)(n+1)! > 30,000. Since 13 x 6! = 9,360 and 15 x 7! = 75,600,
we need n = 6. Thus,

/1 oy 1+1+ 1 N 1 N 1 N 1 N 1
€ X = -
0 3 5x2! 7x3! 9x4!  11x5! 13 x6!

~ 1.46264,

with error less than 1074

Romberg Integration

Using Taylor’s Formula, it is possible to verify that for a function f having contin-
uous derivatives up to order 2m +2 on [a, b] the error E,, = I — T, in the Trapezoid
Rule approximation 7,, to I = fu b f(x) dx satisfies

G G C Cm 1
En=I—Tn=—1+—2+—3+~--+T+0( )
n nmn

n2m+2

where the constants C; depend on the 2 jth derivative of f. It is possible to use this
formula to obtain higher-order approximations to I, starting with Trapezoid Rule
approximations. The technique is known as Romberg integration or Richardson
extrapolation.

To begin, suppose we have constructed Trapezoid Rule approximations for
values of n that are powersof 2: n = 1, 2, 4, 8, .... Accordingly, let us define
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TkO _— Tzk. Thus Té) e Tl, Tlo by Tz, TZO E=3 T4’

Using the formula for 7o« = I — Ey given above, we write

G G Cn 1
0
Similarly, replacing k by k + 1, we get
Cy Cy Cn 1
0 —_— —_—— — —————— - e e — —————— —_——
T =1~ 00 ~ e g T O\ g )

If we multiply the formula for T, | by 4 and subtract the formula for T, the terms
involving C; will cancel out. The first term on the right will be 41 — I = 31, so let
us also divide by 3 and define T} to be the result. Then as k — oo, we have

T R < S S e )
k+1 3 42k 43k 4mk 4m+1k
(The Ci1 are new constants.) Unless these constants are much larger than the
previous ones, Tk1+1 ought to be a better approximation to / than Tk0+1 since we have
eliminated the lowest order (and therefore the largest) of the error terms, C; /45!,
In fact, Exercise 8 in Section 6.7 shows that 7}',; = Sy, the Simpson’s Rule
approximation based on 2¢*! subintervals.

We can continue the process of eliminating error terms begun above. Replacing
k + 1 by k + 2 in the expression for 7, | we obtain

C} Cl cl 1
Ty =y -_-—2_ __ =3 _ ... _ m_ 10
k+2 — 42(k+1) 43(k+1) 4m(k+1) 4(m+1)(k+1) )

To eliminate C} we can multiply the second formulaby 16, subtract the first formula,

and divide by 15. Denoting the result 772, ,, we have, as k — oo,

1 1
2 Who-Te , G G oL
k2 15 T gk 4mk 4mtk )

We can proceed in this way, eliminating one error term after another. In general,
for j <mandk >0,

| i ;
i I T 7 C}H _ C} o 1
ke 47— 1 =4 g T gk T O\ g )

The big-O term refers to k — oo for fixed j. All this looks very complicated,
but it is not difficult to carry out in practice, especially with the aid of a computer
spreadsheet. Let R; = Tjj , called a Romberg approximation to /, and calculate
the entries in the following scheme in order from left to right and down each column
when you come to it:
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Scheme for calculating Romberg approximations

Té)=T1=Rg o T10=T2 —> T20=T4 e T:?=T8 —>
4 \ \
Tll = 8 = Ry Tzl =8 T31 = S3
{ 4
T} =R, T}
{
T33 =R3

Stop when Tjj “and R; differ by less than the acceptable error, and quote R; as the

Romberg approximation to | b f(x)dx.

The top line in the scheme is made up of the Trapezoid Rule approximations
T, T, Ty, Tg, . . .. Elements in subsequent rows are calculated by the formulas:

Formulas for calculating Romberg approximations

AR Aoy o1 ATS-T
1 3 2 : 3 3 3
72 16T} — 1} . 167} — 1)
2 15 3 15
- 64T} — T}
3 63

i _ it
In general, if 1 < j < k,then T}/ = —F—=
Each new entry is calculated from the one above and the one to the left of that one.

IEET Calculate the Romberg approximations Ro, Ry, Rz, R, and Ry for
2
1
the integral I = / —dx.
1 X
Solution 'We will carry all calculations to 8 decimal places. Since we must obtain

R4, we will need to find all the entries in the first five columns of the scheme. First
we calculate the first two Trapezoid Rule approximations:

1 1
R0=T00=T1=§+Z:O.75000000,
17t 2 1/1

R=Th=-|-xO+Z+=|=])|=0. .

=1 2[2()+3+2(2>] 0.70833333

The remaining required Trapezoid Rule approximations were calculated in Exam-
ple 1 of Section 6.6, so we will just record them here:

T = Ty = 0.69702381,
T = Ty = 0.69412185,
T = Ty = 0.69339120.

Now we calculate down the columns from left to right. For the second column:
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AT — Ty
Ri=S=T'= —‘—3—i = 0.69444444;
the third column:
aT? - 1P
Sq =T} = —2—L1 =0.69325397,
16T} — T}
R=T}= —2—15—1 = 0.69317460;
the fourth column:
ard -1
Ss=T, = —3—3——2 = 0.69315453,
167! — T}
2 = __315 2 = 0.69314790,
4 2 TZ
Ry=T; = 9%5—3_—2 = 0.69314748;
and the fifth column:
AT — T)
Sig =T} = —4—23 =0.69314765,
16T} — T}
T = % = 0.69314719,
64T7 — T}
T} 43 —0.69314718,
63
25677 — T3
Ry=T} = "—2_"3 =0.69314718.
4T 255

Since T} and R, agree to the 8 decimal places we are calculating, we conclude that,
correct to 8 decimal places,

2
1 =/ —d—x- =1n2 ~ 0.69314718.. ...
1 X
| ]

The various approximations calculated above suggest that for any given value of
n = 2*, the Romberg approximation R, should give the best value obtainable for
the integral based on the n + 1 data values yo, y1, ..., y». This is so only if the
derivatives £ (x) do not grow too rapidly as n increases.

Other Methods

As developed above, the Trapezoid, Midpoint, Simpson, and Romberg methods all
involved using equal subdivisions of the interval [a, b]. There are other methods that
avoid this restriction. In particular, Gaussian approximations involve selecting
evaluation points and weights in an optimal way so as to give the most accurate
results for “well-behaved” functions. See Exercises 11-13 below. You can consult
a text on numerical analysis to learn more about this method.

Finally, we note that even when you apply one of the methods of Sections 6.6
and 6.7, it may be advisable for you to break up the integral into two or more
integrals over smaller intervals and then use different subinterval lengths 4 for each
of the different integrals. You will want to evaluate the integrand at more points in
an interval where its graph is changing direction erratically than in one where the
graph is better behaved.
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Rewrite the integrals in Exercises 1-6 in a form to which
numerical methods can be readily applied.

X
e
dx
—-x

1 d 1
L / _dx 2,/
o x13(1+x) o V1

w

! e* &0 dx
. —_—dx 4. _
—14/1—x2 BEESE VAR

L5 [T 4 o [7dx
) 0 +/slnx ) o x*+1

1/n? as n increases? Why?

8. Transform the integral [ = f loo e dx using the

substitution x = 1/¢ and calculate the Simpson’s Rule
approximations Sy, S4, and Sg for the resulting integral
(whose integrand has limit 0 as t — 04). Quote the value of

I to the accuracy you feel is justified. Do the

approximations converge as quickly as you might expect?

Can you think of a reason why they might not?

of Example 4, to within an error of 1074,

1
B 10. Recall that [;° ¢ dx = 5 /7. Combine this fact with

the result of the previous exercise to evaluate

o]
1= / e dx to 3 decimal places.
1

11. (Gaussian approximation) Find constants A and u, with u

between 0 and 1, such that

1
/ fx)ydx = Af(—uw) + Af (w)
-1

holds for every cubic polynomial

f(x) =ax® +bx?>+cx +d. Fora general function f(x)

defined on [—1, 1], the approximation

1
/ fxydx = Af(—u)+ Af(w)
-1

is called a Gaussian approximation.

of (a)x* (b)cosx, and (c)e*, over the interval

[—1, 1], and find the error in each approximation.

13. (Another Gaussian approximation) Find constants A and

B, and u between 0 and 1, such that

1
/ fx)dx = Af(~u) + Bf(0) + Af (w)
-1

7. Find T», Ty, Ty, and Ty for fol /% dx and find the actual
errors in these approximations. Do the errors decrease like

9. Evaluate | = fol ¢™*" dx, by the Taylor’s Formula method

. Use the method of Exercise 11 to approximate the integrals

holds for every quintic polynomial
flx) = ax> +bx* +exd +dx? +ex + f.

. Use the Gaussian approximation

1
/ S(x)ydx = Af(—u) + Bf(0) + Af(u),
-1

where A, B, and u are as determined in Exercise 13, to find
approximations for the integrals of (a) %%, (b)cosx,
and (c) e* over the interval [—1, 1], and find the error in
each approximation.

. Calculate sufficiently many Romberg approximations

R1, Ry, R3, ... for the integral

1 2!
/ e dx
0

to be confident you have evaluated the integral correctly to 6
decimal places.

. Use the values of f(x) given in the table accompanying

Exercise 9 in Section 6.6 to calculate the Romberg
approximations Ry, R and R3 for the integral

fx)dx
0

in that exercise.

. The Romberg approximation R; for fa b f(x)dx requires

five values of f, yo = f(a), y1 = fla+h),...,
Y4 = f(x +4h) = f(b), where h = (b — a)/4. Write the
formula for R, explicitly in terms of these five values.

. Explain why the change of variable x = 1/¢ is not suitable

o]

for transforming the integral dx into a form to

+x2

which numerical methods can be applied. Try to devise a
method whereby this integral could be approximated to any
desired degree of accuracy.

L IE £ () = 22 forx # 0 and £(0) = 1, show that f”(x)
P

has a finite limit as x — 0. Hence, f” is bounded on finite
interyals [0, a] and Trapezoid Rule approximations 7, to

sinx . . .
foa —— dx converge suitably quickly as n increases.

X
Higher derivatives are also bounded (Taylor’s Formula is
useful for showing this) so Simpson’s Rule and higher-order
approximations can also be used effectively.
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Chapter Review

Key Ideas
» What do the following terms and phrases mean?

© integration by parts ¢ a reduction formula

an inverse substitution ¢ a rational function
the method of partial fractions

a computer algebra system

an improper integral of type I

an improper integral of type Il

S O O O O O

a p-integral © the Trapezoid Rule

o the Midpoint Rule
o Describe the inverse sine and inverse tangent substitutions.
e What is the significance of the comparison theorem for

improper integrals?

< Simpson’s Rule

o When is numerical integration necessary?

Summary of Techniques of Integration

Students sometimes have difficulty deciding which method to use
to evaluate a given integral. Often no one method will suffice
to produce the whole solution, but one method may lead to a
different, possibly simpler, integral that can then be dealt with on
its own merits. Here are a few guidelines:

1. First, and always, be alert for simplifying substitutions. Even
when these don’t accomplish the whole integration, they can
lead to integrals to which some other method can be applied.

2. If the integral involves a quadratic expression Ax? + Bx + C
with A # 0 and B # 0, complete the square. A simple
substitution then reduces the quadratic expression to a sum
or difference of squares.

3. Integrais of products of trigonometric functions can some-
times be evaluated or rendered simpler by the use of appro-
priate trigonometric identities such as:

2 2

sin“x +cos“x =1

secx =1 + tan® x

csc?x =1 + cot? x

sinx cosx = 1 sin2x

2
201
sin”x = 5 (1 — cos 2x)

cos?x = %(1 + cos 2x).

4. Integrals involving (a? — x2)1/2 can be transformed using
x = asind. Integrals involving (a2 + x*)!/2 or 1/(a* + x%)
may yield to x = atané. Integrals involving (x2 — a?)!/2
can be transformed using x = a sec 6 or x = acosh@.

5. Use integration by parts for integrals of functions such as
products of polynomials and transcendental functions, and
for inverse trigonometric functions and logarithms. Be alert
for ways of using integration by parts to obtain formulas

DTN COMPICE Tl 0 T o mplt o0

6. Use partial fractions to integrate rational functions whos:e
denominators can be factored into real linear and qua.ldratlc
factors. Remember to divide the polynomials first, if nec-
essary, to reduce the fraction to one whose numerator has
degree smaller than that of its denominator.

7. There is a table of integrals at the back of this book. If you
can’t do an integral directly, try to use the methods above to
convert it to the form of one of the integrals in the table.

8. If you can’t find any way to evaluate a definite integral for
which you need a numerical value, consider using a computs:r
or calculator and one of the numerical methods presented in

Sections 6.6-6.8.

Review Exercises on Techniques of Inte-
gration

Here is an opportunity to get more practice evaluating integrals.
Unlike the exercises in Sections 5.6 and 6.1-6.3, which used only
the technique of the particular section, these exercises are grouped
randomly so you will have to decide which techniques to use.

xdx
) =13

/ d+vo'?
' Vx

. /(x2+x—2)sin3xdx

xdx
L. | ——
/2x2+5x+2

3. / sin> x cos® x dx

IS

3dx

5. _
/4x2 -1

=

Vi-x? 3 2
7. —4——dx 8. x” cos(x“)dx
x
2d
9 [ X4 w0 [ 4
(5x3 — 2)2/3 x2 4+ 2x ~ 15
dx
1m | — . i 2
/ @12 12 /(smx + cosx)“dx
13. f 2T+ & dx 4. | SBr
1+ sin?x
<3 2
15 [ 22y 6. [ —4x
cos” x (3 +5x2)3/2
2 —
17. fe_x sin(2x) dx 18. / M dx
x2 4+ 5x
dx
19. cos(3lnx)dx 20. T
4x3 4 x
In(1 + x2
21. ﬂ_x_) dx 22, sin” x cos* x dx
1+ x2
2
23. f ——dx 24. /tan4x secxdx
](2 - (fz



25.

27.

29.

31.

33.

3s.

37.

39.

41.

43.

45,

47.

49.

51.

53.

55.

57.

59.

61.

63.

/
/

/
/

/

3
/‘x3_

/
/

/
/
/
/
/

/e

/

/

xZdx
(4x + 1)10

sin’ (4x) dx

dx
2+e*

sin? x cos x
T dx
2 —sinx

dx
x2/1 —x2
3
X
V1—4x2
x+1

Vx2+1

x> =3
9x

dx

sin’ x cos” x dx

xdx
x2+2x — 1

x2sin~! (2x)dx

cos? x sin® x dx

@+ x)/x
=1

x3 +2x2
in(21

sin(2 Inx) dx

X

2tan~! x

——dx
14 x2

In(3 + x2)

34 x2
sin~!(x/2)
“4— x2)1/2

(x+ Ddx
VxZ+6x+10
x3dx
(2 +2)77

26.

28.

30.

32.

34.

36.

38.

40.

42.

44,

46.

48.

50.

52.

54.

56.

58.

60.

62.

64.

/
[
Jrova
[wm

/

[

xsin~ T —

2x3 +x

33

X2+

1

x2+2x+2

/ x3(ln x)2 dx

/¥ dx

x2

10~/x+2

dx
Vx+2

& g

/==

2x — 3

———dx
V4 —3x+x2

/\/3x2—1
7(1)6

/ Jr—x2dx

/x tan! %dx

/
/

/

dx

x(x% +4)2

in(l
sin(In x) dx

x2

B +x=2

x2 -7

/ cos’ x dx

/tan4(rrx) dx

/ex(l _er)5/2 dx

/

x2

2x2 -3

dx

dx
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5 <2 66 ax
65. _— . _
/1+xl/3 ¥ /xx()cz-{—x—}—l)l/2
1+x xdx
67. 68. _
/14‘\/— f4x4+4x2+5
xdx dx
69. —_— 70. —_
(x2 — 4)? /x3+x2+x
71. / x?tan~! x dx 72. / ¢* sec(e®) dx
dx dx
73. - 74. _—
/4sinx—3cosx /x1/3—1
d
75. / _dx g6 [ —_xdx
tan x + sinx \/m
7. [ 4 78. /\/1+ex dx
1+x
4
79. /x3i 80. /xex cos x dx
x> —8

Other Review Exercises

1. Evaluate / = fxex cosxdx and J = fxe)r sinx dx by

differentiating ¢* ((ax +b) cosx + (cx +d) sin x) and exam-
ining coefficients.

2. For which real numbers r is the following reduction formula
(obtained using integration by parts) valid?

o0 00
/ x"e T dx = r/ e dx
0 0

Evaluate the integrals in Exercises 3-6 or show that they diverge.

/2 o) 1
3./ cscxdx 4./ 3dx
0 1 x+x

dx

1 1
5. / xInxdx —_—
0 -1 x4/1—x2

7. Show that the integral I = fooo (1/(/x €*)) dx converges and
that its value satisfies I < (2e + 1)/e.

B 8. By measuring the areas enclosed by contours on a topographic

map, a geologist determines the cross-sectional areas A (m?)
through a 60 m high hill at various heights 4 (m) given in
Table 2.

Table 2.

h 0 10 20 30 40 50 60
A 10,200 9,200 8,000 7,100 4,500 2,400 100

If she uses the Trapezoid Rule to estimate the volume of the
hill (which is V = [/ A(h)dh), what will be her estimate,
to the nearest 1,000 m3?

B 9. What will be the geologist’s estimate of the volume of the

hill in Exercise 8 if she uses Simpson’s Rule instead of the
Trapezoid Rule?
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10. Find the Trapezoid Rule and Midpoint Rule approximations
. ! N/ 1 . Quote
@ T4 and M4 for the integral I = fo 5 ¥ sin(rx)dx Q

an
the results to 5 decimal places. Quqte avalue of I to z;z ;rilm z_
decimal places as you feel are justified by these app!

tlllonst.he results of Exercise 10 to calculate the Trap.ezoull lrllu;e
" aop ximation T and the Simpson’s Rule approx1mat1fol ti
?(I))f rt(l)le integral J in that exercise. Quote? a .valgebo -
as many decimal places as you feel are justified by
approximations.
. Devise a way to evaluate / = /;CZ x2S + 23 + 1 dx
numerically, and use it to find 7 correct to 3 decimal places.

. 4
13. You want to approximate the integral I = fo f(x)dx of
an unknown function f(x), and you measure the following

values of f:

Table 3.
X 0 1 2 3 4
f(x) 0730 1.001 1332 1.729 2.198

(a) What are the approximations 74 and S4 to I that you
calculate with these data.

(b) You then decide to make more measurements in order to
calculate 7Tg and S3. You obtain 73 = 5.5095. What do
you obtain for Sg?

(¢) You have theoretical reasons to believe that f(x) is, in
fact, a polynomial of degree 3. Do your calculations
support this theory? Why or why not?

Challenging Problems

# 1. (a) Some people think that 7 = 22/7. Prove that this is not
so by showing that

/1x4(1—x)4 22
—r—dXZ——T(
0 X +1 7

() If I = [ x4(1 = x)* dx, show that

(c) Evaluate I and hence determine an explicit small interval
containing 7.

2. (a) Find a reduction formula for f (1- xz)" dx.
(b) Show that if » is a positive integer, then
1 2n 2
2 !
/ A =xdx = —(l)—
0 2n+ 1!
(c) Use your reduction formula to evaluate
S —x132dx.

3. (a) Show that x* + x2 + 1 factors into a product of two real
quadratics, and evaluate [(x* + 1)/(x* + x2 + 1) dx.
Hint: x* + x2 4+ 1 = (x2+ 1)% — &2,
(b) Use the same method to find [ (x> + 1)/(x* + 1) dx.

4 Let Iny = f X" (nx)" dx.
[o¢]
(a) Show that Imn = -t fo x
(=H"n!
(m + D! )

ne—(m+1)x dx.

(b) Show that Inn =

1 _
5. Letlnzfo x"e *dx.
and hence that

(a) Show that0 < In <~

limp—o0 In =0. 1
=nl, ——fornz f,and lp=1-

€

(b) Show that I

]
I ]
(c) Verify by induction that 7, =n!{ I - e—z J—'
=0

n
. 1
(d) Deduce from (a) and (c) that n]‘1>n(;10 jé‘o F =e.

6. If K is very large, which of the approximations Ty (Trape-
zoidal Rule), Mpo (Midpoint Rule), and Sigo (Simpson’s
Rule) will be closest to the true value for f 01 e XX dx? Which
will be farthest? Justify your answers. (Caution: this is trick-
ier than it sounds!)

7. Simpson’s Rule gives the exact definite integral for a cubic
f. Suppose you want a numerical integration rule that gives
the exact answer for a polynomial of degree 5. You might
approximate the integral over the subinterval {m — A, m + h|

)
by something of the form 2% (af(m =)+ bfm = 5) +

h
fm)+bf(m + 5) +af(m+ h)), for some constants a, b,
and c.

(a) Determine a, b, and ¢ for which this will work. (Hint:
take m = 0 to make things simple.)

(b) Use this method to approximate fol e ¥ dx using first
one and then two of these intervals (thus evaluating the
integrand at nine points).

8. The convergence of improper integrals can be a more delicate
matter when the integrand changes sign. Here is one method
that can be used to prove convergence in some cases where
the comparison theorem fails.

(a) Suppose that f(x) is differentiable on [1, o), f’(x)
is continuous there, f'(x) < 0, and lim f(x) = 0.
X—=>00

Show that floo F(x) cos(x)dx converges. Hint: what is
SO @ldx ?

(b) Under the same hypotheses, show that floo f(x)sinx dx
converges. Hint: integrate by parts and use (a).

oo | sin x|

in
(c) Show that [ ilx—x dx converges but ||

. . . 1 — cos(2x
verges. Hint: |sinx| > sin®x = ——Q Note

dx di-

that (b) would work just as well with sinx replaced by
cos(2x).



