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Preface

By the time a textbook reaches its fifth edition, it is to be hoped that the author
has got some things right. Little change in the topics presented and their ordering
has been made in this edition. (The one exception is the coverage of differential
equations; see below.) An attempt to make this edition a bit shorter than the previous
one was successful. But this was not achieved at the expense of chopping material
that has made the book’s title Calculus: a Complete Course appropriate. The main
changes are as follows:

e Much material on calculations with the computer algebra system (CAS) Maple
has been added. See Appendix 5 for a list of topics and their locations. These
additions range in length from brief examples to entire sections. However, it
is not intended that this material constitute a lab course on using Maple (for
which the author’s colleague, Dr. Robert Israel, has written an excellent book,
Calculus: The Maple Way also published under the Addison-Wesley logo). It
is, however, intended to provide the student with some insight into the power
of Maple to carry out both symbolic and numeric calculations in the context
of calculus, and into the pitfalls that await the unwary user. This material is
necessarily specific to the particular CAS Maple. Any attempt to make this
material generic so that it would apply as well to Mathematica or Derive or
even Matlab (which uses the Maple symbolic engine) would have either added
greatly to the length or have rendered it useless.

e There is no longer a separate chapter on differential equations. That chapter
repeated some material from the body of the text and was inadequate for a
whole course on the subject. Nevertheless, the close ties, both motivational
and historical, between calculus and differential equations demand that some
material on the latter be interspersed throughout the text, and this has been
increased here; almost none of what was in Chapter 17 of the fourth edition is
actually omitted.

e A few topics have been extensively reworked. For example, the entire dis-
cussion of the Coriolis effect in Section 11.2 has been rewriten to become, it
is hoped, much clearer. Also, the treatment of quadratic forms and positive
definiteness has been greatly amplified, and the classification of critical points
of functions of several variables now rests solidly on properties of the Hessian
matrix and applies more transparently to functions of several variables, rather
than just two variables.

In addition to the above, numerous small local changes have been made here and
there to improve the text. Some awkward examples have been removed or replaced
with more appropriate ones. Some exercises have been removed and others added.
A few new figures have been added and others improved. The process of making a
book more reader friendly is always an ongoing one, and relies heavily on comments
received from readers.



To the Student

When I took my first course in calculus there was no prescribed textbook but a
book called Calculus Made Easy was recommended to those of us who felt we
needed something beyond the notes we could take during lectures. I bought the
book, hoping that it would live up to its title and I would have an easy time learning
calculus. It didn’t and I didn’t.

Is calculus a very difficult subject? No, not really, but it sometimes seems that
way to students, especially at the beginning, because of the new ideas and techniques
involved, and because success in mastering calculus depends on having a very solid
basis in precalculus mathematics (algebra, geometry, and trigonometry) to build
upon. You may want to review the background material in Chapter P (Preliminaries)
even if your instructor does not refer to it in class. Learning calculus will provide
you with many useful tools for analyzing problems in numerous fields of interest,
especially those regarded as “scientific.” It is worth your while to acquire those
tools, but, like any other worthwhile task, this one requires much effort on your
part. No book or instructor can remove that requirement.

In writing this book I have tried to organize material in such a way as to make it
as easy as possible, but not at the expense of “sweeping the real difficulties under the
rug.” You may find some of the concepts difficult to understand when they are first
introduced. If so, reread the material slowly, if necessary several times; think about
it; formulate questions to ask fellow students, your TA, or your instructor. Don’t
delay. It is important to resolve your problems as soon as possible. If you don’t
understand today’s topic, you may not understand how it applies to tomorrow’s
either. Mathematics is a “linear discipline”; it builds from one idea to the next.

Doing exercises is the best way to deepen your understanding of calculus and
to convince yourself that you understand it. There are numerous exercises in this
text — too many for you to try them all. Some are “drill” exercises to help you
develop your skills in calculation. More important, however, are the problems that
develop reasoning skills and your ability to apply the techniques you have learned
to concrete situations. In some cases you will have to plan your way through a
problem that requires several diffferent “steps” before you can get to the answer.
Other exercises are designed to extend the theory developed in the text and therefore
enhance your understanding of the concepts of calculus.

The exercises vary greatly in difficulty. Usually, the more difficult ones occur
towards the end of exercise sets, but these sets are not strictly graded in this way
because exercises on a specific topic tend to be grouped together. Some exercises
in the regular sets are marked with an asterisk “+”” This symbol indicates that the
exercise is either somewhat more theoretical, or somewhat more difficult than most.
The theoretical ones need not be difficult; sometimes they are quite easy. Most of
the problems in the Challenging Problems section forming part of the Chapter
Review at the end of most chapters are also on the difficult side though these are not
typically marked with a “+”,

Do not be discouraged if you can’t do all the exercises. Some are very difficult
indeed, and only a few very gifted students will be able to do them. However,
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you should be able to do the vast majority of the exercises. Some will take much
more effort than others. When you encounter difficulties with problems proceed as
follows:

1. Read and reread the problem until you understand exactly what information it

gives you and what you are expected to find or do.

. If appropriate, draw a diagram illustrating the relationships between the quan-

tities involved in the problem.

. If necessary, introduce symbols to represent the quantities in the problem. Use

appropriate letters (e.g., V for volume, ¢ for time). Don’t feel you have to use
x or y for everything.

. Develop a plan of attack. This is usually the hardest part. Look for known

relationships; try to recognize patterns; look back at the worked examples in
the current or relevant previous sections; try to think of possible connections
between the problem at hand and others you have seen before. Can the problem
be simplified by making some extra assumptions? If you can solve a simplified
version it may help you decide what to do with the given problem. Can the
problem be broken down into several cases, each of which is a simpler problem?
When reading the examples in the text, be alert for methods that may turn out
to be useful in other contexts later.

. Try to carry out the steps in your plan. If you have trouble with one or more of

them you may have to alter the plan.

. When you arrive at an answer for a problem, always ask yourself whether it

is reasonable. If it isn’t, look back to determine places where you may have
made an error.

Answers for most of the odd-numbered exercises are provided at the back of the

book. Exceptions are exercises that don’t have short answers, for example “Prove
that ...” or “Show that ...” problems where the answer is the whole solution.
A Student Solutions Manual that contains detailed solutions to even-numbered
exercises is available.

Besides * used to mark more difficult or theoretical problems, the following

symbols are used to mark exercises of special types:

2

i

exercises pertaining to differential equations or initial-value problems. (It is
not used in sections which are wholely concerned with DEs.)

problems requiring the use of a calculator. Often a scientific calculator is
needed. Some such problems may require a programmable calculator.
problems requiring the use of either a graphing calculator or mathematical
graphing software on a personal computer.

problems requiring the use of a computer. Typically, these will require either

computer algebra software (e.g., Maple, Mathematica, Derive), or a spreadsheet
program (e.g., Lotus 123, Microsoft Excel, Quattro Pro).
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To the Instructor

As its title suggests, this book is intended to cover all the material usually en-
countered in a three- or four-semester real-variable calculus program, involving
real-valued functions of a single real variable (differential calculus in Chapters
14 and integral calculus in Chapters 5-8), as well as vector-valued functions of
a single real variable (Chapter 11), real-valued functions of several real variables
(Chapters 12-14) and vector-valued functions of several real variables (Chapters
15-16). Chapter 9 concerns sequences and series, and its position is rather arbitrary.
Chapter 10 contains necessary background on vectors and geometry in 3-space as
well as a bit of linear algebra that is useful, though not absolutely essential, for the
understanding of subsequent multivariable material. There is a wealth of material
here — too much to include in any course. You must select what material to include
and what to omit, taking into account the background and needs of your students.

At the University of British Columbia, where the author taught for 34 years)
calculus is divided into four trimesters, the first two covering single-variable calculus
(Chpters 1-9), the third covering functions of several variables (part of Chapter 10,
and Chapters 12-14) taken by somewhat fewer students, and the fourth covering
vector calculus (part of Chapter 10, and Chapters 11 and 15-16) taken by a relatively
small number of students, mainly in mathematics, engineering, and the physical
sciences. In none of these courses is there enough time to cover all the material
in the appropriate chapters; some sections are always omitted.) However, the
wide selection of topics and applications provides for a rich and varied learning
experience for students.

The text is designed for general calculus courses, especially those for sci-
ence and engineering students. Most of the material requires only a reasonable
background in high school algebra and analytic geometry. (See Chapter P — Pre-
liminaries for a review of this material.) However, some optional material is more
subtle and/or theoretical, and is intended mainly for stronger students.

Several supplements are available for use with Calculus: A Complete Course.
Among these are:

e a Web Site www.pearsoned.ca/text/adams_calc

o an Instructor’s Solutions Manual with detailed solutions to all the exercises,
prepared by the author.

o an Instructor’s CRROM with detailed solutions to ali the exercises in .gif and
.pdf format and software to enable instructors to publish solutions to specified
exercises in HTML documents on their course web sites.

o a Student Solutions Manual with detailed solutions to all the even-numbered
exercises, prepared by the author.

¢ a Maple lab manual, Calculus: The Maple Way, by Robert Israel (University

of British Columbia) with instruction, examples, and problems dealing with
the effective use of the computer algebra system Maple as a tool for calculus.




viii

Acknowledgments

The first four editions of this material have been used for classes of general science,
engineering, and mathematics majors and honours students at the University of
British Columbia. I am grateful to many colleagues and students, at UBC and at
many other institutions where these books have been used, for their encouragement
and useful comments and suggestions.

In preparing the revision of this text I have had guidance from several dedicated

reviewers who provided new insight and direction to my writing. I am especially
grateful to the following people:

William J. Anderson McGill University Canada
Robert M. Coreless University of Western Ontario Canada
Poul G. Hjorth Technical University of Denmark Denmark
Jack Macki University of Alberta Canada
Mark MacLean University of British Columbia Canada
G. R. Nicklason University College of Cape Breton Canada
Sixten Nilsson Linkoping University Sweden
Viena Stastna University of Calgary Canada
Nader Zamani University of Windsor Canada

Special thanks go to Olov Johansson (Sweden) who checked the previous
edition and the typeset version of this one, and who made many helpful suggestions.

Finally, I wish thank the sales and marketing staff of all Addison-Wesley (now
Pearson Canada) divisions around the world for making the previous editions so
successful, the editorial and production staff in Toronto, in particular Leslie Carson,
Kelly Cochrane, Dave Ward, Pamela Voves, Meaghan Eley, and Gillian Scobie
for their assistance and encouragement, and Betty Robinson for her careful copy
editing of the typeset manuscript.

I typeset this volume using TEX and PostScript on a PC running Linux-
Mandrake, and also generated all of the figures in PostScript using the mathe-
matical graphics software package MG developed by my colleague Robert Israel
and myself.

The expunging of errors and obscurities in a text is an ongoing and asymptotic
process; hopefully each edition is better than the previous one. Nevertheless, some
such imperfections always remain, and I will be grateful to any readers who call
them to my attention, or give me any other suggestions for future improvements.

RAA.

Vancouver, Canada
April, 2002
admse@emath.ubc.ca



P.1

P.2

P.3

P.4

Contents

Preface

To the Student

To the Instructor
Acknowledgments

What Is Calculus?

Real Numbers and the Real

Line

Intervals

The Absolute Value

Equations and Inequalities Involving
Absolute Values

Cartesian Coordinates in the
Plane

Axis Scales

Increments and Distances

Graphs

Straight Lines

Equations of Lines

Graphs of Quadratic Equations

Circles and Disks

Equations of Parabolas
Reflective Properties of Parabolas
Scaling a Graph

Shifting a Graph

Ellipses and Hyperbolas

Functions and Their Graphs

The Domain Convention

Graphs of Functions

Even and Odd Functions; Symmetry and
Reflections

Reflections in Straight Lines

Defining and Graphing Functions with
Maple

12

12
13
14
14
16

19

19
21
22
22
22
24

26

27
28
31

32
34

P.5

P.6

1.1

1.2

1.3

14

Combining Functions to Make

New Functions

Sums, Differences, Products, Quotients,
and Multiples

Composite Functions

Piecewise Defined Functions

The Trigonometric Functions

Some Useful Identities

Some Special Angles

The Addition Formulas

Other Trigonometric Functions
Maple Calculations
Trigonometry Review

Examples of Velocity, Growth
Rate, and Area

Average Velocity and Instantaneous
Velocity

The Growth of an Algal Culture

The Area of a Circle

Limits of Functions

One-Sided Limits
Rules for Calculating Limits
The Squeeze Theorem

Limits at Infinity and Infinite
Limits

Limits at Infinity

Limits at Infinity for Rational Functions
Infinite Limits ‘

Using Maple to Calculate Limits

Continuity

Continuity at a Point
Continuity on an Interval
There Are Lots of Continuous Functions

36
36

38
39

42

45
46
48
50
52
53

57

57
57

59
60

62

66
67
69

71
72
73

74
76

78

78
80
81

ix



Continuous Extensions and Removable 82
Discontinuities
Continuous Functions on Closed, Finite 82
Intervals
Finding Maxima and Minima Graphically 84
Finding Roots of Equations 86
1.5 The Formal Definition of 89
Limit
Using the Definition of Limit to Prove 91
Theorems
Other Kinds of Limits 92
Chapter Review 95
| 2 | o7
2.1 Tangent Lines and Their 97
Slopes
Normals 101
2.2 The Derivative 103
Some Important Derivatives 104
Leibniz Notation 107
Differentials 109
Derivatives Have the Intermediate-Value 110
Property
2.3 Differentiation Rules 112
Sums and Constant Multiples 112
The Product Rule 114
The Reciprocal Rule 116
The Quotient Rule 117
2.4 The Chain Rule 120
Finding Derivatives with Maple 123
Building the Chain Rule into Differentiation 123
Formulas
Proof of the Chain Rule (Theorem 6) 124
2.5 Derivatives of Trigonometric 125
Functions
Some Special Limits 126
The Derivatives of Sine and Cosine 127
The Derivatives of the Other Trigonometric 130
Functions
2.6 The Mean-Value Theorem 132
Increasing and Decreasing Functions 135
Proof of the Mean-Value Theorem 137
2.7 Using Derivatives 140
Approximating Small Changes 140

2.8
2.9

2.10

2.11

3.2

3.3

34

3.5

Average and Instantaneous Rates of
Change

Sensitivity to Change

Derivatives in Economics

Higher-Order Derivatives

Implicit Differentiation

Higher-Order Derivatives
The General Power Rule

Antiderivatives and Initial-

Value Problems

Antiderivatives

The Indefinite Integral

Differential Equations and Initial-Value
Problems

Velocity and Acceleration

Velocity and Speed
Acceleration
Falling Under Gravity

Chapter Review

Functions

Inverse Functions

Inverting Non-One-to-One Functions
Derivatives of Inverse Functions

Exponential and Logarithmic

Functions
Exponentials
Logarithms

The Natural Logarithm and
Exponential

The Natural Logarithm

The Exponential Function

General Exponentials and Logarithms
Logarithmic Differentiation

Growth and Decay

The Growth of Exponentials and
Logarithms

Exponential Growth and Decay Models

Interest on Investments

Logistic Growth

The Inverse Trigonometric

Functions
The Inverse Sine (or Arcsine) Function

The Inverse Tangent (or Arctangent)
Function
Other Inverse Trigonometric Functions

141

143
144

147

151

154
155

156

156
157
159

163

163
165
167

170

175

175

179
179

181

181
183

186

186
189
192
193
196
196

198
200
202

205

205
208

210



3.6

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Hyperbolic Functions
Inverse Hyperbolic Functions

Second-Order Linear DEs with

Constant Coefficients

Recipe for Solving ay” + by’ +cy =0

Simple Harmonic Motion

Damped Harmonic Motion

Nonhomogeneous Equations and
Resonance

Chapter Review

Related Rates
Procedures for Related-Rates Problems

Extreme Values

Maximum and Minimum Values

Critical Points, Singular Points, and
Endpoints

Finding Absolute Extreme Values

The First Derivative Test

Functions Not Defined on Closed, Finite
Intervals

Concavity and Inflections

The Second Derivative Test

Sketching the Graph of a

Function
Asymptotes

Examples of Formal Curve Sketching

Extreme-Value Problems

Procedure for Solving Extreme-Value
Problems

Finding Roots of Equations

Newton’s Method

Fixed-Point Iteration

“Solve” Routines

Linear Approximations

Approximating Values of Functions

Error Analysis

Taylor Polynomials

Taylor’s Formula

Big-O Notation

Indeterminate Forms

I’Hopital’s Rules

Chapter Review

213
217

219

219
222
225
226

230
233

233
234
239

239
241

241
242
244

247
250

252

253
257

262
264

272

272
275
278

279

280
281

285

287
289

292
294
299

5.1

5.2

53

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

Sums and Sigma Notation

Evaluating Sums

Areas as Limits of Sums
The Basic Area Problem

Some Area Calculations

The Definite Integral

Partitions and Riemann Sums
The Definite Integral
General Riemann Sums

Properties of the Definite
Integral

A Mean-Value Theorem for Integrals

Definite Integrals of Piecewise Continuous

Functions

The Fundamental Theorem
of Calculus

The Method of Substitution

Trigonometric Integrals

Areas of Plane Regions

Areas Between Two Curves

Chapter Review

Integration by Parts

Reduction Formulas

Inverse Substitutions

The Inverse Trigonometric Substitutions
Completing the Square

Other Inverse Substitutions

The tan(8/2) Substitution

Integrals of Rational
Functions

Linear and Quadratic Denominators
Partial Fractions

Integration Using Computer
Algebra or Tables

Using Maple for Integration

Using Integral Tables

303

303
305

309

310
311

315

315
317
319

321

324
325

328

334
338

- 342

343
347

349

349
353

356

356
360
361
362

364

365
366

372

373
374

xi



6.5

6.6

6.7
6.8

7.2
7.3

7.4

7.5

7.6

7.7

Improper Integrals

Improper Integrals of Type |
Improper Integrals of Type II

Estimating Convergence and Divergence

The Trapezoid and Midpoint

Rules
The Trapezoid Rule

The Midpoint Rule
Error Estimates

Simpson’s Rule

Other Aspects of Approximate

Integration

Approximating Improper Integrals
Using Taylor’s Formula

Romberg Integration

Other Methods

Chapter Review

Volumes of Solids of
Revolution

Volumes by Slicing

Solids of Revolution
Cylindrical Shells

Other Volumes by Slicing

Arc Length and Surface Area

Arc Length

The Arc Length of the Graph of a
Function

Areas of Surfaces of Revolution

Mass, Moments, and

Centre of Mass

Mass and Density

Moments and Centres of Mass

Two- and Three-Dimensional Examples

Centroids
Pappus’s Theorem

Other Physical Applications
Hydrostatic Pressure

Work

Potential and Kinetic Energy

Applications in Business,

Finance, and Ecology

The Present Value of a Stream of
Payments

376

376
379
382

385

386
389
390

393
397

398
398
399
402

404

tegration 407

407

408
409
412

417

421

421
422

426
429

429
432
434

437
440

443
445
447

450

450

7.8

7.9

8.1

8.2

8.3

84

8.5

8.6

The Economics of Exploiting Renewable
Resources

Probability

Expectation, Mean, Variance,
and Standard Deviation

The Normal Distribution

First-Order Differential

Equations

Separable Equations
First-Order Linear Equations

Chapter Review

Conics

Parabolas

The Focal Property of a Parabola
Ellipses

The Focal Property of an Ellipse
The Directrices of an Ellipse
Hyperbolas

The Focal Property of a Hyperbola
Classifying General Conics

Parametric Curves

General Plane Curves and
Parametrizations
Some Interesting Plane Curves

Smooth Parametric Curves
and Their Slopes

The Slope of a Parametric Curve
Sketching Parametric Curves

Arc Lengths and Areas for
Parametric Curves

Arc Lengths and Surface Areas
Areas Bounded by Parametric Curves

Polar Coordinates

and Polar Curves
Some Polar Curves

Intersections of Polar Curves
Polar Conics

451

454
457

461
465

465
469

472

477

477
478
479
480
482
482
483
484
485

488
492

492
496

497
498

500
500
502

505
507

510
511

Slopes, Areas, and Arc Lengths 512

for Polar Curves
Areas Bounded by Polar Curves
Arc Lengths for Polar Curves

Chapter Review

513
514

516



9.1

9.2

9.3

9.4

9.5

9.6

9.7

92.8

9.9

92.10

Sequences and Convergence
Convergence of Sequernces
Infinite Series

Geometric Series
Telescoping Series and Harmonic Series
Some Theorems About Series

Convergence Tests for Positive

Series
The Integral Test

Using Integral Bounds to Estimate the
Sum of a Series

Comparison Tests

The Ratio and Root Tests

Using Geometric Bounds to Estimate the
Sum of a Series

Absolute and Conditional
Convergence

The Alternating Series Test
Rearranging the Terms in a Series

Power Series

Algebraic Operations on Power Series
Differentiation and Integration of Power
Series

Maple Calculations

Taylor and Maclaurin Series

Maclaurin Series for Some Elementary
Functions

Other Maclaurin and Taylor Series

Applications of Taylor and

Maclaurin Series
Approximating the Values of Functions

Functions Defined by Integrals
Indeterminate Forms

Taylor’'s Formula Revisited

Using Taylor’s Theorem to Find Taylor
and Maclaurin Series

Taylor’s Theorem with Integral Remainder

The Binomial Theorem and

Binomial Series
The Binomial Series

Series Solutions of
Differential Equations

Chapter Review

519

519
521

527

529
531
532

535

535
537

539
542
543

546

548
551

554

556
558

564

565
567

569
573

573
575
575

577
578

579

581

582
585

589

10.1

10.2

10.3

104

10.5
10.6

10.7

11.1

Analytic Geometry
in 3 Dimensions

Euclidean n-Space
Describing Sets in the Plane, 3-Space,
and n-Space

Vectors

Vectors in 3-Space

Hanging Cables and Chains

The Dot Product and Projections
Vectors in n-Space

The Cross Product in 3-Space

Determinants
The Cross Product as a Determinant
Applications of Cross Products

Planes and Lines

Planes in 3-Space
Lines in 3-Space
Distances

Quadric Surfaces

A Little Linear Algebra

Matrices

Determinants and Matrix Inverses

Linear Transformations

Linear Equations

Quadratic Forms, Figenvalues, and
Eigenvectors

Using Maple for Vector and
Matrix Calculations

Vectors

Matrices

Chapter Review

Vector Functions
of One Variable

Differentiating Combinations of Vectors

593

593

597
598

599

602
604
606
608
611

613
615
617

619

619
622
624

628

631

632
634
636
637
639

642

642
645

648

651

651

655

xiii



xiv

11.2 Some Applications of Vector 658 12.5 The Chain Rule 732

Differentiation . Homogeneous Functions 737
Motion Involving Varying Mass 658 Higher-Order Derivatives 738
Circular Motion 659 . . .
Rotating Frames and the Coriolis Effect 661 12.6 Linear Approximations, 743
. Differentiability, and
11.3 Curves and Parametrizations 666 Differentials
Parametrizing the Curve of Intersection of 668 Proof of the Chain Rule 746
Two Surfaces Differentials 747
Arc Length 669 Functions from n-space to m-space 748
Piecewise Smooth Curves 671 12.7 Gradients and Directional 751
The Arc-Length Parametrization 672 Derivatives
11.4 Curvature, Torsion, and 674 Directional Derivatives 753
the Frenet Frame Rates Perceived by a Moving Observer 757
The Unit Tangent Vector 674 The Gradient in Three and More 758
Curvature and the Unit Normal 675 Dimensions
Torsion and Binormal, the Frenet—Serret 678 12.8 Implicit Functions 763
Formulas .
. Systems of Equations 764
11.5 Curvature and Torsion fOI‘ 682 Jacobian Determinants 768
General Parametrizations The Implicit Function Theorem 769
Tangential and Normal Acceleration 685 .
Evolutes 686 12.9 Taylor Series and 774
An Application to Track (or Road) Design 687 Approximations
Approximating Implicit Functions 778
Maple Calculations 688 Chapter Review 780
11.6 Kepler's Laws of Planetary 691
Motion 783
Ellipses in Polar Coordinates 692
Polar Components of Velocity and 693
Acceleration 13.1 Extreme Values 783
Central Forces and Kepler’s Second Law 694 Classifying Critical Points 786
Derivation of Kepler’s First and 696 .
Third Laws 13.2 Extreme Values of Functions 791
Conservation of Energy 698 Defme_d on Restricted
. Domains
Chapter Review 701 Linear Programming 795
205 13.3 Lagrange Multipliers 798
The Method of Lagrange Multipliers 799
12.1 Functions of Several Variables 705 Problems with More than One Constraint 803
Graphical Representations 706 . .
Nonl P
Using Maple Graphics 710 :|n theat 'r‘ogramr;ung 805
_—_ — 13.4 The Metho
12.2 Limits and Continuity 713 3 , e d of Least Squares 808
. . . Linear Regression 809
12.3 Partial Derivatives 718 Applications of the Least Squares Method 812
Tangent Planes and Normal Lines 721 to Integrals
Distance from a Point to a Surface: 723 13.5 Parametric Problems 815
A Geometric Example . L .
. . . Differentiating Integrals with Parameters 815
12.4 Higher-Order Derivatives 726 Envelopes 819

The Laplace and Wave Equations 729 Equations with Perturbations 823



Newton’s Method

Implementing Newton’s Method Using a
Spreadsheet

Calculations with Maple

Solving Systems of Equations
Finding and Classifying Critical Points

13.6

13.7

Chapter Review

14.1

Double Integrals

Double Integrals over More General
Domains

Properties of the Double Integral

Double Integrals by Inspection

14.2 Iteration of Double Integrals

in Cartesian Coordinates

Improper Integrals and a

Mean-Value Theorem

Improper Integrals of Positive Functions

A Mean-Value Theorem for Double
Integrals

Double Integrals in Polar

Coordinates
Change of Variables in Double Integrals

14.3

14.4

14.5
14.6

Triple Integrals

Change of Variables
in Triple Integrals
Cylindrical Coordinates
Spherical Coordinates

Applications of Multiple
Integrals

The Surface Area of a Graph

The Gravitational Attraction of a Disk
Moments and Centres of Mass
Moment of Inertia

14.7

Chapter Review

15.1

Vector and Scalar Fields
Field Lines (Integral Curves)
Vector Fields in Polar Coordinates

15.2 Conservative Fields

Equipotential Surfaces and Curves
Sources, Sinks, and Dipoles

825
827

828

829
830

834

836

836
839

840
840

842

850

850
853

856

861
867
874

875
877

883

883
885
886
888

892

895

895
897
899

9200

903
907

15.3

154

15.5

15.6

16.1

16.2

16.3

16.4

16.5
16.6

Line Integrals 910
Evaluating Line Integrals 912
Line Integrals of Vector Fields 916
Connected and Simply Connected 919
Domains
Independence of Path 920
Surfaces and Surface 924
integrals
Parametric Surfaces 925
Composite Surfaces 927
Surface Integrals 927
Smooth Surfaces, Normals, and 928
Area Elements
Evaluating Surface Integrals 930
The Attraction of a Spherical Shell 934
Oriented Surfaces and Flux 937
Integrals
Oriented Surfaces 937
The Flux of a Vector Field Across a 938
Surface
Chapter Review 943
245
Gradient, Divergence, 945
and Curl
Interpretation of the Divergence 947
Distributions and Delta Functions 950
Interpretation of the Curl 951
Some Identities Involving 954
Grad, Div, and Curl
Scalar and Vector Potentials 956
Maple Calculations 959
Green’s Theorem in the Plane 963
The Two-Dimensional Divergence 965
Theorem
The Divergence Theorem 966
in 3-Space
Variants of the Divergence Theorem 971
Stokes’s Theorem 973
Some Physical Applications 978
of Vector Calculus
Fluid Dynamics 978
Electromagnetism 980
Electrostatics 981
Magnetostatics 982
Maxwell’s Equations 984

XV



xvi

16.7 Orthogonal Curvilinear
Coordinates
Coordinate Surfaces and Coordinate
Curves
Scale Factors and Differential Elements
Grad, Div, and Curl in Orthogonal
Curvilinear Coordinates

Chapter Review

Appendix 1 Complex

Numbers

Definition of Complex Numbers

Graphical Representation of Complex
Numbers

Complex Arithmetic
Roots of Complex Numbers

Appendix Il Continuous

Functions
Limits of Functions

Continuous Functions
Completeness and Sequential Limits

Continuous Functions on a Closed, Finite
Interval

Appendix Il The Riemann
Integral

Uniform Continuity

986
987

989
993

997
A-1

A-2
A-2

A-5
A-9

A-12

A-12
A-13
A-14
A-16

A-18

A-21

Appendix IV Differential
Equations

Classifying Differential Equations
Linear ODEs

First-Order ODEs

Exact Equations

Integrating Factors

Slope Fields and Solution Curves
Existence and Uniqueness of Solutions
Numerical Methods

Appendix V Doing Calculus
with Maple
List of Maple Examples and Discussion

The “newtroot” Procedure of
Section 13.7
The “newtcp” Procedure of Section 13.7

Answers to Odd-Numbered
Exercises

Index

A-23

A-24
A-24
A-26
A-27
A-29
A-30
A-31
A-32

A-40

A-41
A-41

A-43

A-45

A-91



What Is Calculus?

Early in the seventeenth century, the German mathematician Johannes Kepler an-
alyzed a vast number of astronomical observations made by Danish astronomer
Tycho Brahe and concluded that the planets must move around the sun in ellipti-
cal orbits. He didn’t know why. Fifty years later the English mathematician and
physicist Isaac Newton answered that question.

Why do the planets move in elliptical orbits around the sun? Why do hurricane
winds spiral counterclockwise in the northern hemisphere? How can one predict
the effects of interest rate changes on economies and stock markets? When will
radioactive material be sufficiently decayed to enable safe handling? How do warm
ocean currents in the equatorial Pacific affect the climate of eastern North America?
How long will the concentration of a drug in the bloodstream remain at effective
levels? How do radio waves propagate through space? Why does an epidemic
spread faster and faster and then slow down? How can I be sure the bridge I
designed won’t be destroyed in a windstorm?

These and many other questions of interest and importance in our world relate
directly to our ability to analyze motion and how quantities change with respect
to time or each other. Algebra and geometry are useful tools for describing rela-
tionships among static quantities, but they do not involve concepts appropriate for
describing how a quantity changes. For this we need new mathematical operations
that go beyond the algebraic operations of addition, subtraction, multiplication,
division, and the taking of powers and roots. We require operations that measure
the way related quantities change.

Calculus provides the tools for describing motion quantitatively. It introduces
two new operations called differentiation and integration, which, like addition and
subtraction, are opposites of one another; what differentiation does, integration
undoes.

For example, consider the motion of a falling rock. The height (in metres) of
the rock t seconds after it is dropped from a height of Ay m is a function A(t) given
by

h(t) = ho — 4.9¢%.

The graph of y = A(t) is shown in the figure below:
y
ho

y = h(t)

t

The process of differentiation enables us to find a new function, which we denote
h'(t) and call the derivative of h with respect to ¢, that represents the rate of change
of the height of the rock, that is, its velocity in metres/second:

(1) = —9.8t.

Conversely, if we know the velocity of the falling rock as a function of time,
integration enables us to find the height function A(r).




Calculus was invented independently and in somewhat different ways by two
seventeenth-century mathematicians, 1saac Newton and Goitfried Wilhelm Leibniz.
Newton’s motivation was a desire to analyze the motion of moving objects. Using
his calculus he was able to formulate his laws of motion and gravitation and to
conclude from them that the planets must move around the sun in elliptical orbits.

Many of the most fundamental and important “laws of nature” are conveniently
expressed as equations involving rates of change of quantities. Such equations are
called differential equations, and techniques for their study and solution are at the
heart of calculus. In the falling rock example the appropriate law is Newton’s
Second Law of Motion:

force = mass x acceleration.

The acceleration, —9.8 m/s2, is the rate of change (the derivative) of the velocity,
which is in turn the rate of change (the derivative) of the height function.

Much of mathematics is related indirectly to the study of motion. We regard
lines, or curves, as geometric objects, but the ancient Greeks thought of them as
paths traced out by moving points. Nevertheless, the study of curves also involves
geometric concepts such as tangency and area. The process of differentiation is
closely tied to the geometric problem of finding tangent lines; similarly, integra-
tion is related to the geometric problem of finding areas of regions with curved
boundaries.

Both differentiation and integration are defined in terms of a new mathematical
operation called a limit. The concept of the limit of a function will be developed
in Chapter 1. That will be the real beginning of our study of calculus. In the
chapter called Preliminaries, we will review some of the background from algebra
and geometry needed for the development of calculus that follows.



CHAPTER P

Preliminaries

Introduction This preliminary chapter reviews the most important things you
should know before beginning calculus. Topics include the real number system,
Cartesian coordinates in the plane, equations representing straight lines, circles, and
parabolas, functions and their graphs, and, in particular, the trigonometric functions.

Depending on your pre-calculus background, you may or may not be familiar

with these topics. If you are, you may want to skim over this material to refresh
your understanding of the terms used; if not, you should study this chapter in detail.

Figure P.1

The real line

Calculus depends on properties of the real number system. Real numbers are
numbers that can be expressed as decimals, for example,

5 =5.00000. ..
—3 = ~0.750000. ..
1'=0.3333
V2 = 14142
7 =3.14159

In each case the three dots . . . indicate that the sequence of decimal digits goes on
forever. For the first three numbers above, the patterns of the digits are obvious;
we know what all the subsequent digits are. For +/2 and 7 there are no obvious
patterns.

The real numbers can be represented geometrically as points on a number line,
which we call the real line, shown in Figure P.1. The symbol R is used to denote
either the real number system or, equivalently, the real line.

| L R B T | by |

) -1 -2 0 ! 1 3 2 37 4

The properties of the real number system fall into three categories: algebraic
properties, order properties, and completeness. You are already familiar with the
algebraic properties; roughly speaking, they assert that real numbers can be added,
subtracted, multiplied, and divided (except by zero) to produce more real numbers
and that the usual rules of arithmetic are valid.

The order properties of the real numbers refer to the order in which the numbers
appear on the real line. If x lies to the left of y, then we say that “x is less than
y” or “y is greater than x.” These statements are written symbolically as x < y
and y > x, respectively. The inequality x < y means that either x < y or x = y.
The order properties of the real numbers are summarized in the following rules for
inequalities:
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The symbol = means
“implies.”

Rules for inequalities

If a, b, and ¢ are real numbers, then:

l.a<b = at+c<b+c
2.a<b =S a—c<b-—c
3.a<bandc >0 B ac < bc
4. a<bandc <0 = ac > bc; in particular, —a > —b
1
5. a0 = ;>O
1 1
6. 0<a<b = - < -
b a

Rules 1-4 and 6 (for @ > 0) also hold if < and > are replaced by < and >.

Note especially the rules for multiplying (or dividing) an inequality by a number.
If the number is positive, the inequality is preserved; if the number is negative, the
inequality is reversed.

The completeness property of the real number system is more subtle and difficult
to understand. One way to state it is as follows: if A is any set of real numbers
having at least one number in it, and if there exists a real number y with the property
that x < y for every x in A, then there exists a smallest number y with the same
property. Roughly speaking, this says that there can be no holes or gaps on the real
line—every point corresponds to a real number. We will not need to deal much
with completeness in our study of calculus. It is typically used to prove certain
important results, in particular, Theorems 8 and 9 in Chapter 1. (These proofs are
given in Appendix II but are not usually included in elementary calculus courses;
they are studied in more advanced courses in mathematical analysis.) Only when
we study infinite sequences and series in Chapter 9 will we encounter any direct
use of completeness.

The set of real numbers has some important special subsets:
(1) the natural numbers or positive integers, namely, the numbers 1, 2, 3, 4, ...
(i) the integers, namely, the numbers 0, +1, +2, £3, ...

(iii) the rational numbers, that is, numbers that can be expressed in the form of a
fraction m/n, where m and » are integers, and n # 0.

The rational numbers are precisely those real numbers with decimal expansions
that are either:

(a) terminating (that is, ending with an infinite string of zeros), for example,
3/4 =0.750000. . ., or

(b) repeating (that is, ending with a string of digits that repeats over and over),
for example, 23/11 = 2.090909. .. = 2.09. (The bar indicates the pattern of
repeating digits.)

Real numbers that are not rational are called irrational numbers.
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Figure P.2 Finite intervals
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m Show that each of the numbers (a) 1.323232-.- = 1.32 and
(b) 0.3405405405 . . . = 0.3405 is a rational number by expressing it as a quotient
of two integers.

Solution
(a) Letx = 1.323232... Thenx — 1 =10.323232...and

100x = 132.323232...=13240.323232... =132+ x — 1.

Therefore, 99x = 131 and x = 131/99.

(b) Let y = 0.3405405405... Then 10y = 3.405405405... and
10y — 3 = 0.405405405... Also,

10000y = 3405.405405405 ... = 3405 4+ 10y — 3.

Therefore, 9990y = 3402 and y = 3402/9990 = 63/185.

_u

The set of rational numbers possesses all the algebraic and order properties of the
real numbers but not the completeness property. There is, for example, no rational
number whose square is 2. Hence, there is a “hole” on the “rational line” where v/2
should be.! Because the real line has no such “holes,” it is the appropriate setting
for studying limits and therefore calculus.

Intervals

A subset of the real line is called an interval if it contains at least two numbers and
also contains all real numbers between any two of its elements. For example, the
set of real numbers x such that x > 6 is an interval, but the set of real numbers y
such that y # 0 is not an interval. (Why?) It consists of two intervals.

If a and b are real numbers and a < b, we often refer to

(i) the open interval from a to b, denoted by Ja, b[, consisting of all real numbers
x satisfyinga < x < b.

(ii) the closed interval from a to b, denoted by [a, b], consisting of all real numbers
x satisfyinga < x < b.

(iii) the half-open interval [a, b[, consisting of all real numbers x satisfying the
inequalities a < x < b.

(iv) the half-open interval ]a, b], consisting of all real numbers x satisfying the
inequalities a < x < b.

These are illustrated in Figure P.2. Note the use of reversed square brackets ] and
[ and hollow dots to indicate endpoints of intervals that are not included in the
intervals, and square brackets [ and ] and solid dots to indicate endpoints that are

1" How do we know that +/2 is irrational? Suppose, to the contrary, that /2 is rational. Then

~2 = m/n, where m and n are integers and n # 0. We can assume that the fraction m/»n has
been “reduced to lowest terms”; any common factors have been cancelled out. Now m?/n? = 2,
som? = 2n?, which is an even integer. Hence m must also be even. (The square of an odd integer
is always odd.) Since m is even, we can write m = 2k, where k is an integer. Thus 4k2 = 2x? and
n® = 2k?, which is even. Thus # is also even. This contradicts the assumption that /2 could be-
written as a fraction m/n in lowest terms; m and n cannot both be even. Accordingly, there can
be no rational number whose square is 2.
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4 >
the interval Ja, ool
< *
a
the interval ] — 00, a]
< >

interval | — 0o, oof is the real line

Figure P.3 Infinite intervals

The symbol <= means “if and
only if,” or “is equivalent to.”

0 4
TR
0o 3/7
< ]—00,3/7]
0 1 7/5 2
I e ' 4
11,7/5]

Figure P.4 The intervals for
Example 2

included. The endpoints of an interval are also called boundary points.

The intervals in Figure P.2 are finite intervals; each of them has finite length
b — a. Intervals can also have infinite length, in which case they are called infinite
intervals. Figure P.3 shows some examples of infinite intervals. Note that the
whole real line R is an interval, denoted by ]—o0, oo[. The symbol oo (“infinity”)
does not denote a real number, so we never include it in an interval.

m Solve the following inequalities. Express the solution sets in terms

of intervals and graph them.

2
(@) 2x—1>x+3 (b) - >2r—1 © >5
3 x—1
Solution
@ 2x—1>x+3 Add 1 to both sides.
2x >x+4 Subtract x from both sides.
x >4 The solution set is the interval [4, ool.

(b) ‘% > 2x — 1 Multiply both sides by —3.

x < —6x+3 Add 6x to both sides.

Tx <3 Divide both sides by 7.
3
X <= The solution set is the interval |—oo, 3/7].

(c) We transpose the 5 to the left side and simplify to rewrite the given inequality
in an equivalent form:

2 5(—1 7-5
L5320 e 220D, i
x—1 x—1 x—1

> 0.

The fraction il is undefined at x = 1 and is O at x = 7/5. Between

x —_—
these numbers it is positive if the numerator and denominator have the same
sign, and negative if they have opposite sign. It is easiest to organize this sign

information in a chart:

x 1 7/5
7—5x + + + 0 -
x—1 - o+ o+ =

T-50/x—1) — undef  + 0 -

Thus the solution set of the given inequality is the interval 11, 7/5].

Sometimes we will need to solve systems of two or more inequalities that must
be satisfied simultaneously. We still solve the inequalities individually and look for
numbers in the intersection of the solution sets.
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m Solve the systems of inequalities:
@3<2x+1<5 ®3x—1<5x+3<2x+15.

Solution

(a) Using the technique of Example 2, we can solve the inequality 3 < 2x + 1 to
get 2 < 2x,s0 x > 1. Similarly, the inequality 2x + 1 < 5leads to 2x < 4, s0
x < 2. The solution set of system (a) is therefore the closed interval [1, 2].

(b) We solve both inequalities as follows:

3x -1 <5x+3 Sx4+3<2x+15
—1 -3 <5x—3x S5x —2x<15-3
and
—4 < 2x 3x <12
-2 <x x <4

The solution set is the interval ]—2, 4].

Solving quadratic inequalities depends on solving the corresponding quadratic equa-
tions.

3 CIu I  Quadratic inequalities
Solve: (a)xZ—35x+6<0 (b) 2x% + 1 > 4x.

Solution

(a) The trinomial x> — 5x + 6 factors into the product (x — 2)(x — 3), which is
negative if and only if exactly one of the factors is negative. Sincex —3 < x—2,
this happens when x —3 < Oand x —2 > 0. Thus weneed x < 3 and x > 2;
the solution set is the open interval 12, 3[.

(b) The inequality 2x> + 1 > 4x is equivalent to 2x> — 4x + 1 > 0. The
corresponding quadratic equation 2x> — 4x + 1 = 0, which is of the form
Ax? + Bx + C = 0, can be solved by the quadratic formula:

L _"BEVBT-4AC _4£JVI6-8 _ V2
h 24 B 4 o2

so the given inequality can be expressed in the form
(x—1+%«/§)<x—1—%«/§) > 0.

This is satisfied if both factors on the left side are positive or if both are negative.

Therefore, we require that eitherx < 1 — %ﬁ orx > 1+ %\/E The solution

set is the union of intervals ]—oo, 1-— %«/5[ U ]1 + %ﬁ, oo[.

Note the use of the symbol U to denote the union of intervals. A real number is in
the union of intervals if it is in at least one of the intervals. We will also need to
consider the intersection of intervals from time to time. A real number belongs to
the intersection of intervals if it belongs to every one of the intervals. We will use
M to denote intersection. For example,

[1,3[N[2,4]=1[2,3[ while [1,3[U[2,4]=11,4].
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0 2/5

1

the union | — oo, 0[U]2/S, 1[

Figure P.5 The solution set for
Example 5

It is important to remember that
Va? = |a]. Do not write

Va? = a unless you already
know thata > 0.

3 2
IEET I  Solve the inequality 1 < —— and graph the solution set.
X- X

Solution We would like to multiply by x (x — 1) to clear the inequality of fractions,
but this would require considering three cases separately. (What are they?) Instead,
we will transpose and combine the two fractions into a single one:

3 2 3 2 5x —2
< +-<0 == — < 0.
x—1 X x—1 x x{(x —1)

We examine the signs of the three factors in the left fraction to determine where
that fraction is negative:

x 0 2/5 1
S5x—2 — - — 0 + + +
X — 0 + + + + +
x—1 - - — — — 0 +
5x—2 -
_ — undef + 0 — undef +
x(x—=1) L - -

The solution set of the given inequality is the union of these two intervals, namely
]—00,0[U]2/5, 1]. See Figure P.5.
|

The Absolute Value

The absolute value, or magnitude, of a number x, denoted |x]| (read “the absolute
value of x”), is defined by the formula

x| = X, ifx>0
Tl =x, ifx <0

The vertical lines in the symbol | x| are called absolute value bars.

el 31=3, [0/=0, |-5=5.
|

Note that |x| > O for every real number x, and |x| = 0 only if x = 0. People
sometimes find it confusing to say that |[x| = —x when x is negative, but this is
correct since —x is positive in that case. The symbol ./a always denotes the
nonnegative square root of a, so an alternative definition of |x| is |x| = V2.

Geometrically, |x| represents the (nonnegative) distance from x to 0 on the real
line. More generally, |x — y| represents the (nonnegative) distance between the
points x and y on the real line, since this distance is the same as that from the point
x — y to O (see Figure P.6):

Xy, fxzy
x y|—{y—x, ifx <y.
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Figure P.6
|x — y| = distance from x to y 0 x—y y x

The absolute value function has the following properties:

Properties of absolute values

1. |—a| = la|. A number and its negative have the same absolute value:
2. lab] = lallb] énd 1%{ = %. The absolute value of a product (or

quotient) of two numbers is the product (or-quotient) of their absolute
values.

3, la £ b| < |al+ |b] (the triangle inequality). The absolute value of a
sum of or difference between numbers is less than or equal to the sum
of their absolute values.

The first two of these properties can be checked by considering the cases where
either of a or b is either positive or negative. The third property follows from the
first two because +2ab < |2ab| = 2la||b|. Therefore, we have

la £ b|* = (a £ b)* = a® + 2ab + b*
< lal* + 2lallb| + 6> = (Ja| + |b])?,

and taking the (positive) square roots of both sides we obtain |a = b} < |a| + |b|.
This result is called the “triangle inequality” because it follows from the geometric
fact that the length of any side of a triangle cannot exceed the sum of the lengths of
the other two sides. For instance, if we regard the points O, g, and b on the number
line as the vertices of a degenerate “triangle,” then the sides of the triangle have
lengths |a/|, ||, and Ja — b|. The triangle is degenerate since all three of its vertices
lie on a straight line.

Equations and Inequalities Involving Absolute Values

The equation [x| = D (where D > 0) has two solutions, x = D and x = —D: the
two points on the real line that lie at distance D from the origin. Equations and
inequalities involving absolute values can be solved algebraically by breaking them
into cases according to the definition of absolute value, but often they can also be
solved geometrically by interpreting absolute values as distances. For example, the
inequality |x — a| < D says that the distance from x to a is less than D, so x must
lie between @ — D and a + D. (Or, equivalently, ¢ must lie between x — D and
x + D)) If D is a positive number, then

ixl=D = eitherx = ~Dorx =D
Ixl <D o =D <wx <D
kx| =< D = ~D=<x<D
x> D &= either x < —Dorx > D

More generally,
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hr=alz=D ~githery =g~ Dorx =a+D
lx —al =D e ag—=D<x<a+D
'tx—alfD e a—Dxx<a+D

lx=al>D == eitherx <a—Dorx >a+ D

IETTIRA solve: (@) [2x+5(=3 () [Bx-2[ =<1

Solution

(@) 2x+5|=3 ¢= 2x +5=43. Thus, either2x = -3 -5 = -8 or
2x =3 — 5 = —2. The solutions are x = —4 and x = —1.

() 3x —2| <1 & —1 <3x —2 < 1. We solve this pair of inequalities:

—1<3x-2 3x—2<1
—1+2<3x and 3x<142
1/3<x x <1

Thus the solutions lie in the interval [1/3, 1].

Remark Here is how part (b) of Example 7 could have been solved geometrically,
by interpreting the absolute value as a distance:

3x —2| = |3 2 3 2
x—2]= —=}=3x-=.
3 3
Thus the given inequality says that
1 1
3
é » 2 2 1
0 1 2 1 x 3x—==<1 or x—=|<-=.
3 3 3 3 3
Figure P.7  The solution set for This says that the distance from x to 2/3 does not exceed 1/3. The solutions x
Example 7(b) therefore lie between 1/3 and 1, including both of these endpoints. (See Figure P.7.)

(S ETITIER  Solve the equation |x + 1] = |x — 3].

Solution The equation says that x is equidistant from —1 and 3. Therefore x is
the point halfway between —1 and 3; x = (—1+43)/2 = 1. Alternatively, the given
equation says that either x + 1 = x — 3 or x + 1 = —(x — 3). The first of these

equations has no solutions; the second has the solution x = 1.
||

< 37

2
S ETGIEEN  What values of x satisfy the inequality ‘5 - —
X

Solution We have
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2
<3 = -3<5--—-—<3 Subtract 5 from each member.
x

2 ;
—8 < —— < =2 Divide each member by —2.
x
1
4> —>1 Take reciprocals.
x

- <x<1
4

In this calculation we manipulated a system of two inequalities simultaneously,
rather than split it up into separate inequalities as we have done in previous examples.
Note how the various rules for inequalities were used here. Multiplying an inequality
by a negative number reverses the inequality. So does taking reciprocals of an
inequality in which both sides are positive. The given inequality holds for all x in
the open interval ]1/4, 1[.

_u
] Exercises P.1
In Exercises 1-2, express the given rational number as a 23. x° > 4x 24, > —x <2
" repeating decimal. Use a bar to indicate the repeating digits. X 4 3 2
) i 25, —>1+4+— 26. <
1. £ 2. 2 X x—1 x+1
9 11 Solve the equations in Exercises 27-32.
In Exercises 3—4, express the given repeating decimal as a
quotient of integers in lowest terms. 27. x| =3 28. |x -3 =7
3.012 4. 3.27 29, 2145 =4 30. |1 —¢] =1
5. Express the rational numbers 1/7,2/7,3/7, and 4/7 as ’ s
repeating decimals. (Use a calculator to give as many 3L |8 —3s|=9 -7 32. 57 1‘ =1
decimal digits as possible.) Do you see a pattern? Guess the In Exercises 33-40, write the interval defined by the given
decimal expansions of 5/7 and 6/7 and check your guesses. inequality.
6. Can two different decimals represent the same number? 33 xl <2 3. x| <2
What number is represented by 0.999 ... = 0.9? 3. s—1]<2 36. 142 <1
In Exercises 7—12, express the set of all real numbers x satisfying Bl
the given conditions as an interval or a union of intervals. 37. 3x -7 <2 38 2x +5] <1
7.x>0 and x <35 8 x<2 and x> -3 39 f_1<1 40 2_f<£
9. x>-5 or x<—6 10. x < —1 - 2. - .. 2 2
- In Exercises 41-42, solve the given inequality by interpreting it
11. x > -2 12. x <4 or x>2 as a statement about distances on the real line.
In Exercises 13-26, solve the given inequality, giving the AL x+1] > |x =3 4. |x =3 < 2x|

solution set as an interval or union of intervals.
43. Do not fall into the trap | — a| = a. For what real numbers a

13 —2x >4 14. 3x +5<8 is this equation true? For what numbers is it false?
15. 5x —3 <7 —3x 16. 6—x > 3x -4 44. Solve the equation [x — 1| =1 — x.
4 2 45. Show that the inequality
17. 32 —x) <2(3 +x) 18. x> <9
9. 1 3 20 2o, ““la—b| > |lal — |b||
2—x x

21, x2 —2x <0 22. 6x% — 5x < -1 holds for all real numbers a and b.
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P(a, b)

Figure P.8

—1F
~2F
_3k

The coordinate axes and

the point P with coordinates (a, b)

y
3 (2.3)
o(-22) ol
¢(0.5,1.5)
L JERY
-2.3
R i B T
o-3-1 | o2~
y-1.5
=2+
Figure P.9 Some points with their

coordinates

Figure P.10

=y

vV

The four quadrants

The positions of all points in a plane can be measured with respect to two perpen-
dicular real linf:s_ in the plane intersecting at the O-point of each. These lines are
ol .

called coordinate axes in the plang. Usually (but not always) we call one of these
axes the x-axis and draw it horizéﬁﬁtally with numbers x on it increasing to the right;
we call the other the y-axis, and draw it vértically with numbers y on it increasing
upward. The point of intersegtion of the coordinate axes (the point where x and y
are both zero) is called the origin and is often denoted by the letter O.

If P is any point in the plane we can draw a line through P perpendicular to
the x-axis. If a is the value of x where that line intersects the x-axis we call a the
z-coordinate of P. Similarly, the y-coordinate of P is the value of y where a line
through P perpendicular to the y-axis meets the y-axis. The ordered pair (a, b) is
called the coordinate pair, or the Cartesian coordinates, of the point P. We refer
to the point as P(a, b) to indicate both the name P of the point, and its coordinates
(a, b). (See Figure P.8.) Note that the x-coordinate appears first in a coordinate
pair. Coordinate pairs are in one-to-one correspondence with points in the plane;
each point has a unique coordinate pair, and each coordinate pair determines a
unique point. We call such a set of coordinate axes and the coordinate pairs
they determine a Cartesian coordinate system in the plane, after the seventeenth-
century philosopher René Descartes, who created analytic (coordinate) geometry.
When equipped with such a coordinate system, a plane is called a Cartesian plane.

Figure P.9 shows the coordinates of some points in the plane. Note that all
points on the x-axis have y-coordinate 0. We usually just write the x-coordinates
to label such points. Similarly, points on the y-axis have x = 0, and we can label
such points using their y-coordinates only.

The coordinate axes divide the plane into four regions called quadrants. These
quadrants are numbered I to IV, as shown in Figure P.10. The first quadrant is the
upper right one; both coordinates of any point in that quadrant are positive numbers.

Both coordinates are negative in quadrant III; oaly y is positive in quadrant II;
only x is positive in quadrant IV.

Axis Scales

When we plot data in the coordinate plane or graph formulas whose variables have
different units of measure, we do not need to use the same scale on the two axes.
If, for example, we plot height versus time for a falling rock, there is no reason to
place the mark that shows 1 m on the height axis the same distance from the origin
as the mark that shows 1 s on the time axis.

When we graph functions whose variables do not represent physical measure-
ments and when we draw figures in the coordinate plane to study their geometry or
trigonometry, we make the scales identical. A vertical unit of distance then looks
the same as a horizontal unit. As on a surveyor’s map or a scale drawing, line
segments that are supposed to have the same length will look as if they do, and
angles that are supposed to be equal will look equal. Some of the geometric results
we obtain later, such as the relationship between the slopes of perpendicular lines,
are valid only if equal scales are used on the two axes.

Computer and calculator displays are another matter. The vertical and horizon-
tal scales on machine-generated graphs usually differ, with resulting distortions in
distances, slopes, and angles. Circles may appear elliptical and squares may appear



Figure P.11 Increments in x and y

Qx2.52)

1
.
1
1Ay=y2—y]
|
|

0
PG,y M=xo—x Clayn)

Figure P.12 The distance from P to
Qis D =/(x2—x1)2+ (y2 — n1)?
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rectangular or even as parallelograms. Right angles may appear as acute or obtuse.
Circumstances like these require us to take extra care in interpreting what we see.
High-quality computer software for drawing Cartesian graphs usually allows the
user to compensate for such scale problems by adjusting the aspect ratio (the ra-
tio of vertical to horizontal scale). Some computer screens also allow adjustment
within a narrow range. When using graphing software, try to adjust your particular
software/hardware configuration so that the horizontal and vertical diameters of a
drawn circle appear to be equal.

Increments and Distances

When a particle moves from one point to another, the net changes in its coordinates
are called increments. They are calculated by subtracting the coordinates of the
starting point from the coordinates of the ending point. An increment in a variable
is the net change in the value of the variable. If x changes from x| to x», then the
increment in x is Ax = x; — x,.

m Find the increments in the coordinates of a particle that moves from
A3, =3)to B(—1,2).

Solution The increments (see Figure P.11) are:

Ax=-1-3=-4 and Ay=2-(-3)=>5.

_ u

If P(x,, y1) and Q(x2, y2) are two points in the plane, the straight line segment P Q
is the hypotenuse of a right triangle PC Q, as shown in Figure P.12. The legs PC
and C @ of the triangle have lengths

|Ax| =|x2 —x1]  and  [Ay[=ly2 — y1l.

These are the horizontal distance and vertical distance between P and Q. By the
Pythagorean theorem, the length of P Q is the square root of the sum of the squares
of these leg lengths.

Distance formula for points in the plane

The distance D-between P (x;, yi)and Q(x,, yy) is

D = /(Ax)? + (Ay)? = v/ (xz — x)? + (y2 — ¥

The distance between A(3, —3) and B(—1, 2) in Figure P.11 is

V(=1 =324 (2 = (=3))2 = v/(—4)? + 52 = /41 units.
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Figure P.13

(a) The circle x> + y? = 4
(b) The disk xz + y2 < 4

(2.9

-1, D

2,4

1.1

Figure P.14

The parabola y = x2

The distance from the origin O (0, 0) to a point P(x, y) is

Vi =02+ (y — 02 = Vx> + 2.

Graphs

The graph of an equation (or inequality) involving the variables x and y is the set
of all points P (x, y) whose coordinates satisfy the equation (or inequality).

D
\

y

[IELAY The equation x? + y?> = 4 represents all points P(x, y) whose
distance from the origin is /x2 + y2 = +/4 = 2. These points lie on the circle of
radius 2 centred at the origin. This circle is the graph of the equation x? + y? = 4.

(See Figure P.13(a).)
|

m Points (x, y) whose coordinates satisfy the inequality x> + y> < 4
all have distance < 2 from the origin. The graph of the inequality is therefore the

disk of radius 2 centred at the origin. (See Figure P.13(b).)
|

Consider the equation y = x2. Some points whose coordinates

satisfy this equation are (0, 0), (1, 1), (—1, 1), (2,4), and (—2, 4). These points
(and all others satisfying the equation) lie on a smooth curve called a parabola.
(See Figure P.14.)

Straight Lines

Given two points P;(x;, y1) and P>(x3, y2) in the plane, we call the increments
Ax = x, — x1 and Ay = y» — y; respectively the run and the rise between P; and
P,. Two such points always determine a unique straight line (usually called simply
a line) passing through them both. We call the line P, P;.

Any nonvertical line in the plane has the property that the ratio

_rse Ay ym—wy

run  Ax xp—Xx;




Figure P.15 Ay/Ax = Ay' JAY
because triangles P{Q P2 and P{Q'P;
are similar

| x

Figure P.16 Line L has inclination ¢

Figure P.17 AABD is similar to
ACAD
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has the same value for every choice of two distinct points Py (xy, y1) and P2(xz2, y2)

on the line. (See Figure P.15.) The constant m = Ay/Ax is called the slope of the
nonvertical line.
y

The slope of the line joining A (3, —3) and B (—1, 2) is

Ay _2-(=3) 5 5
M= AaxT 13 T 4T W

_u

The slope tells us the direction and steepness of a line. A line with positive slope
rises uphill to the right; one with negative slope falls downhill to the right. The
greater the absolute value of the slope, the steeper the rise or fall. Since the run Ax
is zero for a vertical line, we cannot form the ratio m; the slope of a vertical line is
undefined.

The direction of a line can also be measured by an angle. The inclination of a
line is the smallest counterclockwise angie from the positive direction of the x-axis
to the line. In Figure P.16 the angle ¢ (the Greek letter “phi”) is the inclination of
the line L. The inclination ¢ of any line satisfies 0° < ¢ < 180°. The inclination
of a horizontal line is 0° and that of a vertical line is 90°.

g

Provided equal scales are used on the coordinate axes, the relationship between
the slope m of a nonvertical line and its inclination ¢ is shown in Figure P.16:

Ay tan
m=— =tan¢.
Ax

(The trigonometric function tan is defined in Section P.6 below.)

Parallel lines have the same inclination. If they are not vertical, they must
therefore have the same slope. Conversely, lines with equal slopes have the same
inclination and so are parallel.

If two nonvertical lines, L, and L,, are perpendicular, their slopes m and m»

satisfy m;m, = —1, so each slope is the negative reciprocal of the other:
1 1
my = —— and m; = ——.
msy mi

(This result also assumes equal scales on the two coordinate axes.) To see this,
observe in Figure P.17 that

AD AD
and m; = ——.

my = ——¢
BD DC
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))
linex =3

1l liney=1 3, 1)

3
Figure P.18 The lines y = 1 and

x=3

X

. . AD DC
Since AABD is similar to ACAD, we have E = ——, and so

AD
(DC)( AD)
mmy=|—)|{—]=-1.
AD DC

Equations of Lines

Straight lines are particularly simple graphs, and their corresponding equations are
also simple. All points on the vertical line through the point @ on the x-axis have
their x-coordinates equal to a. Thus x = « is the equation of the line. Similarly,
y = b is the equation of the horizontal line meeting the y-axis at b.

D EINTIERN  The horizontal and vertical lines passing through the point (3, 1)
(Figure P.18) have equations y = 1 and x = 3, respectively.

To write an equation for a nonvertical straight line L, it is enough to know its slope
m and the coordinates of one point P (xq, y1) onit. If P(x, y) is any other point on
L, then

Y=V
I —m,
X — X1

so that

y—y1=m(x —x1) or y=m(x —x1)+ y1.

The equation
y=mlx = x1)+y

is the point-slope equation of the line that passes through the point (x1, y;)
and has slope m.

1D CIUIEREN Find an equation of the line of slope —2 through the point (1, 4).

Solution We substitute x; = 1, y; = 4, and m = —2 into the point-slope form
of the equation and obtain

y==-2(x—-1)+4 or y=—-2x+6.

SCIUTIERIN  Find an equation of the line through the points (1, —1) and (3, 5).
, L 5—(=1) . )
Solution The slope of the line is m = ———= = 3. We can use this slope with

either of the two points to write an equation of the line. If we use (1, —1) we get

y=3x—-1)—1, which simplifiesto y = 3x — 4.




<

Figure P.19 Line L has x-intercept
a and y-intercept b
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If we use (3, 5) we get
y=3(x—-3)+5, which also simplifiesto y = 3x — 4.

Either way, y = 3x — 4 is an equation of the line.
|

The y-coordinate of the point where a nonvertical line intersects the y-axis is called
the y-intercept of the line. Similarly, the z-intercept of a nonhorizontal line is
the x-coordinate of the point where it crosses the x-axis. A line with slope m and
y-intercept b passes through the point (0, b), so its equation is

y=mx—-0)+b or, more simply, y =mx + b.
A line with slope m and x-intercept a passes through (a, 0), and so its equation is
y=m(x — a).

The equation'y = mx+ b is called the slope~y-intercept equation of the
line with slope m and y-intercept b:

The equation ¥ = m{x — a) is called the slope-z-intercept equation of
the line with slope m and x-intercept a.

IEZNEERR  Find the slope and the two intercepts of the line with equation
8x + 5y = 20.
Solution Solving the equation for y we get

_20——8x_ 8 44
TTs TTsrTE

y

Comparing this with the general form y = mx +b of the slope—y-intercept equation,
we see that the slope of the line is m = —8/5, and the y-interceptis b = 4.

To find the x-intercept put y = 0 and solve for x, obtaining 8x = 20, or x = 5/2.
The x-interceptis a = 5/2.

_m

The equation Ax + By = C (where A and B are not both zero) is called the general
linear equation in x and y because its graph always represents a straight line, and
every line has an equation in this form.

Many important quantities are related by linear equations. Once we know that
a relationship between two variables is linear, we can find it from any two pairs of
corresponding values, just as we find the equation of a line from the coordinates of
two points.

IZEIEFN  The relationship between Fahrenheit temperature (F) and Celsius
temperature (C) is given by a linear equation of the form F = mC + b. The
freezing point of water is F = 32° or C = 0°, while the boiling point is F = 212°
or C = 100°. Thus

32=0m+5>b and 212 = 100m + b,
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gquation

9

sob =32 and m = (212 — 32)/100 = 9/5. The relationship is given by the linear

5
or C = §(F—32).

|Exercises P2

In Exercises 1-4, a particle moves from A to B. Find the net
increments Ax and Ay in the particle’s coordinates. Also find the
distance from A to B.

1. A(0,3), B@4,0) 2. A(-1,2), B34, -10)

3. A3,2), B(-1,-2) 4. A(0.5,3), B(2,3)
5. A particle starts at A(—2, 3) and its coordinates change by
Ax =4 and Ay = —7. Find its new position.

6. A particle arrives at the point (—2, —2) after its coordinates
experience increments Ax = —5 and Ay = 1. From where
did it start?

Describe the graphs of the equations and inequalities in
Exercises 7-12.

7.x2+y2:1 8.x2+y2:2
9.x2-|-y2§l 10.x2+y2=0
11. yzx2 12. y<x2

In Exercises 13—14, find an equation for (a) the vertical line and
(b) the horizontal line through the given point.

13. (=2,5/3) 14. (v2,-1.3)
In Exercises 15—18, write an equation for the line through P with
slope m.

15. P(-1, 1), 16. P(-2,2),
17. P(0,b), 18. P(a,0),

In Exercises 19-20, does the given point P lie on, above, or
below the given line?

19. P(2,1), 2x+3y=6 20. P(3,-1),
In Exercises 21-24, write an equation for the line through the
two points.

21. (0,0), (2,3) 22. (=2,1), (2,-2)
23. (4, 1), (~2,3) 24. (=2,0), (0,2)

In Exercises 25-26, write an equation for the line with slope m
and y-intercept b.

5. m=-2, b=2 26. m=-1/2, b=-3

In Exercises 27-30, determine the x- and y-intercepts and the
slope of the given lines, and sketch their graphs.

m=1/2

m=1

m=2 m= =2

x—4y =17

27. 3x+4‘?/:12 28.x+2r=—4

29. V2x — /3y =2

In Exercises 31-32, find equations for the lines through P that
are (a) parallel to and (b) perpendicular to the given line.

30. 1.5x —2y=-3

31. P2, 1), y=x+2 32. P(-2.2), 2x+y=4

33. Find the point of intersection of the lines 3x + 4y = —6 and
2x — 3y = 13.

34. Find the point of intersection of the lines 2x + y = 8 and
S5x =Ty=1.

35. (Two-intercept equations) If a line is neither horizontal nor
vertical and does not pass through the origin, show that its
equation can be written in the form l + g =1, where a is

a

its x-intercept and b is its y-intercept.

+. 36. Determine the intercepts and sketch the graph of the line

X Yy
2 3

37. Find the y-intercept of the line through the points (2, 1) and
3, -D).

38. A line passes through (—2, 5) and (k, 1) and has x-intercept
3. Find k.

39. The cost of printing x copies of a pamphlet is $C, where
C = Ax + B for certain constants A and B. If it costs
$5,000 to print 10,000 copies and $6,000 to print 15,000
copies, how much will it cost to print 100,000 copies?

40. (Fahrenheit versus Celsius) In the F C-plane, sketch the
5

graph of the equation C = 5 (F — 32) linking Fahrenheit
and Celsius temperatures found in Example 12. On the same
graph sketch the line with equation C = F. Is there a
temperature at which a Celsius thermometer gives the same
numerical reading as a Fahrenheit thermometer? If so, find
it.

Geometry

41. By calculating the lengths of its three sides, show that the
triangle with vertices at the points A(2, 1), B(6,4), and
C(5, —3) is isosceles.

42. Show that the triangle with vertices A (0, 0), B(1, \/g), and
C(2, 0) is equilateral.

43. Show that the points A(2, --1), B(1, 3), and C(-3, 2) are
three vertices of a sc]uare and find the fourth vertex.
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44, Find the coordinates of the midpoint on the line segment distances, and hence determine the graph of the equation.
Py P, joining the points Py (xy, y1) and P2 (xp, y2). 47. /_(x 2+ 2 =4

45. Find the coordinates of the point of the line segment joining 3 3 \/ 5 7
the points Pj(x{, y1) and P>(x2, y2) that is two-thirds of the 4. Jx =2+ y =yaxi+(y—2)
way from P to Ps. 49. For what value of & is the line 2x + ky = 3 perpendicular to

46. The point P lies on the x-axis and the point Q lies on the the line 4x + y = 1?7 For what value of £ are the lines

line y = —2x. The point (2, 1) is the midpoint of Q. Find parallel?
the coordinates of P. 50. Find the line that passes through the point (1, 2) and through
In Exercises 47-48, interpret the equation as a statement about tzhe p031nt of 1n1tersect10n of the two lines x + 2y = 3 and
X —2y =—1.

This section reviews circles, parabolas, ellipses, and hyperbolas, the graphs that are
represented by quadratic equations in two variables.

Circles and Disks

The circle having centre C and radius « is the set of all points in the plane that are
at distance a from the point C.

The distance from P(x, y) to the point C(h, k) is /(x — h)? + (y — k)2, so
that the equation of the circle of radius a > 0 with centre at C(h, k) is

Va—h2+(-kr=a.

A simpler form of this equation is obtained by squaring both sides.

Standard equation of a circle

The circle with centre (, k) and radius ¢ > 0 has equation

1 1 1 1 1 X
x =)+ (y—k)? =a’
Figure P.20 Circle
=D+ (-3 =4 In particular, the circle with centre at the origin (0, 0) and radius a has
equation
y
x? 4y =a?
The circle with radius 2 and centre (1, 3) (Figure P.20) has equation
-1+ (-3 =4
ol 1 X ||
The circle having equation (x + 2)? + (y — 1)?> = 7 has centre at
- the point (—2, 1) and radius ~/7. (See Figure P.21.)
|
Figure P.21 Circle If the squares in the standard equation (x — k)% + (v — k)> = a? are multiplied out,
x+2%+(y—-1)2=7 and all constant terms collected on the right-hand side, the equation becomes

x2 = 2hx + y? — 2ky = a* — B> — k>
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exterior

Figure P.22 The interior of a circle
(darkly shaded) and the exterior (lightly
shaded)

Figure P.23 The disk
x2+y?+2x <8

A quadratic equation of the form
x2 + y? 4+ 2ax +2by =c

must represent a circle, a single point, or no points at all. To identify the graph,
we complete the squares on the left side of the equation. Since x? + 2ax are the
first two terms of the square (x + a)? = x2 4 2ax + a?, we add a? to both sides to
complete the square of the x terms. (Note that a? is the square of half the coefficient
of x.) Similarly, add b2 to both sides to complete the square of the y terms. The
equation then becomes

(x+a)+@+b}=c+a*+b.
If ¢ + a®> + > > 0, the graph is a circle with centre (—a, —b) and radius

Ve +a? 4+ b2, If ¢ + a® + b? = 0, the graph consists of the single point (—a, —b).
If ¢ + a* + b? < 0, no points lie on the graph.

m Find the centre and radius of the circle x? + y? — 4x + 6y = 3.

Solution Observe that x> — 4x are the first two terms of the binomial square
(x —2)* = x?> — 4x + 4, and y?> + 6y are the first two terms of the square
(y +3)* = y2 + 6y + 9. Hence we add 4 + 9 to both sides of the given equation
and obtain

X —dx 444y +6y+9=3+4+9 or (x—-2)2+(y+3)=16

This is the equation of a circle with centre (2, —3) and radius 4.

The set of all points inside a circle is called the interior of the circle; it is also called
an open disk. The set of all points outside the circle is called the exterior of the
circle. (See Figure P.22.) The interior of a circle together with the circle itself is
called a closed disk, or simply a disk. The inequality

(x—hy? +(y—k)?* <a

represents the disk of radius |a| centred at (i, k).

(S ETLT YN Identify the graphs of:
©) x24+2x+y*> 8.

(@ x2+2x+y?><8 (b) x>24+2x+y* <38

Solution We can complete the square in the equation x> 4y +2x = 8 as follows:

X242 +1+y'=8+1
x+D*+y?>=09.

Thus the equation represents the circle of radius 3 with centre at (—1, 0). Inequality
(a) represents the (closed) disk with the same radius and centre. (See Figure P.23.)
Inequality (b) represents the interior of the circle (or the open disk). Inequality (c)
represents the exterior of the circle.
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0, —p)
y=-r L

Figure P.24 The parabola 4py = x?

with focus F(0, p) and directrix
y=-pr

e |

X

y:74x2

Figure P.25 Some parabolas

y:ax2
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Equations of Parabolas

A parabola is a plane curve whose points are equidistant from a fixed
point F and a fixed straight line L that does not pass through F. The
point F is the f(fe\ﬁgof the parabola; the line L is the parabola’s directrix.
The line through F perpendicular to L is the parabola’s axis. The point V
where the axis meets the patabola is the parabola’s vertex.

Observe that the vertex V of a parabola is halfway between the focus F and the
point on the directrix L that is closest to F. If the directrix is either horizontal or
vertical, and the vertex is at the origin, then the parabola will have a particularly
simple equation.

Find an equation of the parabola having the point (0, p) as focus
and the line L with equation y = — p as directrix.

Solution TIf P(x,y) is any point on the parabola, then (see Figure P.24) the
distances from P to F and L are given by

PF=(x =02+ (y—p?=+x2+y2—2py+p?
PO=vVx—x)2 40— (=p)*=y>+2py+ p*

For P on the parabola we have PF = P Q, so their squares are also equal:
4y =2py+p* =y +2py + PP,

or, after simplifying,

x>=4py or y= P (called standard forms).
14

Figure P.24 shows the situation for p > 0; the parabola opens upward and is
symmetric about its axis, the y-axis. If p < 0, the focus (0, p) will lie below the
origin and the directrix y = — p will lie above the origin. In this case the parabola
will open downward instead of upward.

-

Figure P.25 shows several parabolas with equations of the form y = ax? for positive
and negative values of a.

D ETIEE  An equation for the parabola with focus (0, 1) and directrix y = —1
is y = x%/4, or x* = 4y. (We took p = 1 in the standard equation.)

n

Find the focus and directrix of the parabola y = —x2.

Solution The given equation matches the standard form y = x2/(4p) provided
4p = —1. Thus p = —1/4. The focus is (0, —1/4) and the directrix is the line
y=1/4.

u
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axis

Figure P.26
parabola

Figure P.27

/<v7\

Reflection by a

Horizontal scaling:

(a) the graph y = 1 — x?

(b) graph of (a) compressed horizontally

(c) graph of (a) expanded horizontally

4py = x*

X

Figure P.28

The two parabolas are

similar. Compare the parts inside the

rectangles.

Interchanging the roles of x and y in the derivation of the standard equation above
gshows that the equation

y2 =4px or (standard equation)

represents a parabola with focus at (p, 0) and vertical directrix x = — p. The axis
is the x-axis.

Reflective Properties of Parabolas

One of the chief applications of parabolas involves their use as reflectors of light
and radio waves. Rays originating from the focus of a parabola will be reflected in a
beam parallel to the axis, as shown in Figure P.26. Similarly, all the rays in a beam
striking a parabola parallel to its axis will reflect through the focus. This property is
the reason why telescopes and spotlights use parabolic mirrors and radio telescopes
and microwave antennas are parabolic in shape. We will examine this property of
parabolas more carefully in Section 8.1.

(@) Y (b) Y (©) Y

/" A \’

Scaling a Graph

The graph of an equation can be compressed or expanded horizontally by replacing
x with a multiple of x. If a is a positive number, replacing x with ax in an equation
multiplies horizontal distances in the graph of the equation by a factor 1/a. (See
Figure P.27.) Replacing y with ay will multiply vertical distances in a similar way.

You may find it surprising that, like circles, all parabolas are similar geometric
figures; they may have different sizes, but they all have the same shape. We can
change the size while preserving the shape of a curve represented by an equation
in x and y by scaling both the coordinates by the same amount. If we scale the
equation 4py = x? by replacing x and y with 4px and 4 py, respectively, we get
4p(4py) = (4px)?, or y = x2. Thus the general parabola 4 py = x2 has the same
shape as the specific parabola y = x2, as shown in Figure P.28.

Shifting a Graph
The graph of an equation (or inequality) can be shifted ¢ units horizontally by
replacing x with x — ¢ or vertically by replacing y with y — ¢.

Shifts
To shift a graph ¢ units to the right, replace x in its equation or inequality
with x = ¢. (If ¢ < 0, the shift will be to the left.)

- To shift a graph c units upward, replace y in its equation or inequality with
y—c. (If ¢ <0, the shift will be downward.)

y=1-(x/2)?
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e LKl The graph of y = (x — 3)? is the parabola y = x? shifted 3 units
to the right. The graph of y = (x + 1)? is the parabola y = x? shifted 1 unit to the
left. (See Figure P.29(a).)

=
y
y=x?
|
4 X
T ! y=(x=3)2
y=(x+1)2 i
L ; —
Figure P.29 -1 i 3 x
(a) Horizontal shifts of y = x2 ‘
(b) Vertical shifts of y = x? o () (b)

LA The graph of y = x? + 1 (that is, y — 1 = x?) is the parabola
y = x? shifted upward 1 unit. The graph of y = x* — 3 (that is, y — (—3) = x?), is
the parabola y = x? shifted downward 3 units. (See Figure P.29(b).)

] [

BRI  The circle with equation (x — k) + (y — k)> = a” having centre
(h, k) and radius/a can be obtained by shifting the circle x> + y*> = a? of radius a
centred at the ori}in h units to the right and k units upward. These shifts correspond
to replacing x with x — h and y with y — k. :

‘ |

The graph of y = ax®+bx +c is a parabola whose axis is parallel to the y-axis.
The parabola opens upward if ¢ > 0 and downward if a < 0. We can complete

. the square and write the equation in the form y = a(x — h)? + k to find the vertex
\ ! / (h, k).
! axis ‘
i x=2 ‘
i ! | Example 11 |  Describe the graph of y = x?—4x +3.
- i Solution The equation y = x? — 4x + 3 represents a parabola, opening upward.
i To find its verte)ﬂ‘ and axis we can complete the square:
L 1 1 X :
:0 focus (2, —3/4 y:x2—4)¢j+4—1=(x—2)2—1, S0 y_(_l)z(x_Z)Z.
1(2, -1 . . ‘ . . . .
( ) This curve is th& parabola y = x2 shifted to the right 2 units and down 1 unit.
L Therefore its veftex is (2, —1) and its axis is the line x = 2. Since y = x? has
Figure P.30 The parabola focus (0, 1/4), the focus of this parabola is (0 + 2, (1/4) — 1), or (2, —3/4). (See
y=x>—4x +3 Figure P.30.)
|




24 PRELIMINARIES

minor axis

)

_,‘«.»,;/‘"‘ . L
Ellipses and Hyperbolas
If @ and b are positive numbers, the equation

2 2
X Y
el
represents a curve called an ellipse that lies wholly within the rectangle —a < x < a,
—b <y < b. (Why?) If a = b, the ellipse is just the circle of radius a centred at
the origin. If @ # b, the ellipse is a circle that has been squashed by scaling it by

different amounts in the two coordinate directions.

The ellipse has centre at the origin, and it passes through the four points (a, 0),
(0, b), (—a, 0), and (0, —b). (See Figure P.31.) The line segments from (—a, 0) to
(a, 0) and from (0, —b) to (0, b) are called the principal axes of the ellipse; the

longer of the two is the major axis and the shorter is the minor axis.
y
Xy
242 =0
N + b

———————————————

Figure P.31

The ellipse f‘; + 5
a2

major axis a, . X
—b
2 . x2 y? .
Y Figure P.32 The hyperbola — — = = 1 and its
= a b2
asymptotes
x2 2
The equation — + = = 1 represents an ellipse with major axis

Figure P.33
hyperbolas

Two rectangular

from (-3, 0) to (3, 0), and minor axis from (0, —2) to (0, 2).
|

The equation

x2 y2

2 !

represents a curve called a hyperbola that has centre at the origin and passes through
the points (—a, 0) and (a, 0). (See Figure P.32.) The curve is in two parts (called
branches). Each branch approaches two straight lines (called asymptotes) as it
recedes far away from the origin. The asymptotes have equations

X x oy
PR 0 and p + = 0.

The equation xy = 1 also represents a hyperbola. This one passes through
the points (—1, —1) and (1, 1) and has the coordinate axes as its asymptotes. It is,
in fact, the hyperbola x? — y? = 2 rotated 45° counterclockwise about the origin.
(See Figure P.33.) These hyperbolas are called rectangular hyperbolas since their
asymptotes intersect at right angles.

We will study ellipses and hyperbolas in more detail in Chapter 8.
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| Exercises P.3
y

In Exercises 1-4, write an equation for the circle with centre C N )
and radius r. Version (c)

1. C(0,0), r=4 2. C(0,2), r=2

y=x°
3. C(—2,0), r=3 4, C3,—4, r=5 (3,3

In Exercises 5-8, find the centre and radius of the circle having
the given equation.

5 x24y*—2x=3 6. x> +y>+4y=0
7.x2+y2—2x+4y:4 8.x2+y2—2xfy+1:0
Describe the regions defined by the inequalities and pairs of
inequalities in Exercises 9-16.
9.x2+y2>1 10.x2+y2<4

1. x+D%*4+y2 <4 12. 2+ (y—2% <4

13 2+y2>1, 2+y><4
4. 2 +y7 <4, 427 +y2<4
15. x2+y2<2x, )c2—|—y2 <2y

16. x2+y2~—4x+2y>4,

17. Write an inequality that describes the interior of the circle
with centre (—1, 2) and radius NS

18. Write an inequality that describes the exterior of the circle
with centre (2, —3) and radius 4.

r+y>1

19. Write a pair of inequalities that describe that part of the
interior of the circle with centre (0, 0) and radius +/2 lying
on or to the right of the vertical line through (1, 0).

20. Write a pair of inequalities that describe the points that lie
outside the circle with centre (0, 0) and radius 2, and inside
the circle with centre (1, 3) that passes through the origin.

In Exercises 21-24, write an equation of the parabola having the

Version (b)

\N\./ /..

Version (d)

4, -2)
Version (a)

Figure P.34

30. What equations result from shifting the line y = mx
(a) horizontally to make it pass through the point (a, b)
(b) vertically to make it pass through (a, b)?

In Exercises 31-34, the graph of y = 4/x + 1 is to be scaled in
the indicated way. Give the equation of the graph that results
from the scaling.

31. horizontal distances multiplied by 3
32. vertical distances divided by 4
33. horizontal distances multiplied by 2/3

34. horizontal distances divided by 4 and vertical distances
multiplied by 2

In Exercises 35-38, write an equation for the graph obtained by

shifting the graph of the given equation as indicated.

35. y=1—x2 down 1, left 1

given focus and directrix.
21. Focus: (0, 4)

22. Focus: (0, —1/2)
23. Focus: (2,0)

24. Focus: (—1,0)

Directrix

.'y:—4

36. X2 4+y2=5 up 2, left 4
3. y=(x - 1)2 —1 down 1, right 1
38. y=x down 2, left 4

Directrix: y = 1/2
Directrix: x = =2

Directrix: x =1

In Exercises 25-28, find the parabola’s focus and directrix, and
make a sketch showing the parabola, focus, and directrix.

25. y =x%/2

27. x = —y*/4

26. y = —x?

28. x = y%/16

Find the points of intersection of the pairs of curves in Exercises
39-42.

39 y=x>+3, y=3x+1
40.y=x2-—6, y:4x—x2
41 x> +y2 =25, 3x+4y=0

42. 2x2 +2y% =5,
In Exercises 4350, identify and sketch the curve represented by
the given equation.

xy=1

2

29. Figure P.34 shows the graph y = x? and four shifted
versions of it. Write equations for the shifted versions.

X
43, = +4y2 =1
2 Y

44. 9x> +16y* = 144
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-3 2 2 2 1 2 . . .
45. x-3) n G+27 1 4. —12+ G+, 51. What is the effect on the graph of an equation in x and y of
J 4 4 (a) teplacing ¥ with —x?
42 (b) replacing y with —y?
47. T y =1 48. x* —y? = -1 52. What is the effect on the graph of an equation in x and y of
replacing x with —x and y with —y simultaneously?
49. xy =—4 50, (x —D(y+2)=1 53. Sketch the graph of |x| + |y| = 1.

The area of a circle depends on its radius. The temperature at which water boils
depends on the altitude above sea level. The interest paid on a cash investment
depends on the length of time for which the investment is made.

Whenever one quantity depends on another quantity, we say that the former
quantity is a function of the latter. For instance, the area A of a circle depends on
the radius r according to the formula

A=mr?

so we say that the area is a function of the radius. The formula is a rule that tells
us how to calculate a unique (single) output value of the area A for each possible
input value of the radius 7.

The set of all possible input values for the radius is called the domain of the
function. The set of all output values of the area is the range of the function. Since
circles cannot have negative radii or areas, the domain and range of the circular area
function are both the interval [0, oo[ consisting of all nonnegative real numbers.

The domain and range of a mathematical function can be any sets of objects;
they do not have to consist of numbers. Throughout much of this book, however,
the domains and ranges of functions we consider will be sets of real numbers.

In calculus we often want to refer to a generic function without having any
particular formula in mind. To denote that y is a function of x we write

= fx),

which we read as “y equals f of x.” In this notation, due to eighteenth-century
mathematician Leqnhard Euler, the function is represented by the symbol f. Also,

x, called the 1ndepefﬁsient variable, represents an input value from the domain of
f,and y, the depenilent variable, represents the corresponding output value f(x)
in the range of f.

A function f on a set D into a set S is a rule that assigns a unigue element
f(x)in S to each element x in D.

In this definition D = D(f) (read “D of f”) is the domain of the function f. The
range R(f) of f is the subset of S consisting of all values f(x) of the function.
Think of a function f as a kind of machine (Figure P.35) that produces an output
value f(x) in its range whenever we feed it an input value x from its domain.



Figure P.35

A function machine
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There are several ways to represent a function symbolically. The squaring
function that converts any input real number x into its square x? can be denoted:
(a) by a formula such as y = x2, which uses a dependent variable y to denote the

value of the function;

(b) by a formula such as f(x) = x2, which defines a function symbol f to name
the function; or

(c) by a mapping rule such as x —> x2. (Read this as “x goes to x2.”)

In this book we will usually use either (a) or (b) to define functions. Strictly speaking,
we should call a function f and not f(x), since the latter denotes the value of the
function at the point x. However, as is common usage, we will often refer to the
function as f(x) in order to name the variable on which f depends. Sometimes it
is convenient to use the same letter to denote both a dependent variable and as a
function symbol; the circular area function can be written A = f(r) = 7r? or as
A = A(r) = mr?. In the latter case we are using A to denote both the dependent
variable and the name of the function.

m The volume of a ball of radius 7 is given by the function
4
V)=~ ar’
(r) 3 wr
for r > 0. Thus the volume of a ball of radius 3 ft is
4 3 3
VQ3)= 3 m(3)° = 36x ft'.

Note how the variable  is replaced by the special value 3 in the formula defining
the function to obtain the value of the function at r = 3.

IS If 2 function F is defined for all real numbers ¢ by
F(t) =2t + 3.

find the output values of F that correspond to the input values 0, 2, x + 2, and F(2).

Solution In each case we substitute the given input for ¢ in the definition of F:

F)=2(0)4+3=0+3=3

FQ)y=22)+3=4+3=7
Fx+2)=2x+2)+3=2x+7
F(FQ)=FTN=2(T+3=17.

The Domain Convention

A function is not properly defined until its domain is specified. For instance, the
function f(x) = x? defined for all real numbers x > 0 is different from the function
g(x) = x? defined for all real x because they have different domains, even though
they have the same values at every point where both are defined. In Chapters 1-9
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we will be dealing with real functions (functions whose input and output values are
real numbers). When the domain of such a function is not specified explicitly, we
will assume that the domain is the largest set of real numbers to which the function
assigns real values. Thus, if we talk about the function x? without specifying a
domain, we mean the function g(x) above.

The domain convention

When a function f is defined without specifying its domain, we assume
that the domain consists of all real numbers x for which the value f(x) of
the function is a real number;

In practice, it is often easy to determine the domain of a function f(x) given by
an explicit formula. We just have to exclude those values of x that would result in
dividing by 0 or taking even roots of negative numbers.

m The square root function. The domain of f(x) = /x is the

interval [0, oo[, since negative numbers do not have real square roots. We have
f(0) =0, f(4) =2, £(10) =~ 3.16228. Note that, although there are fwo numbers
whose square is 4, namely, —2 and 2, only one of these numbers, 2, is the square
root of 4. (Remember that a function assigns a unigue value to each element in its
domain; it cannot assign two different values to the same input.) The square root
function ,/x always denotes the nonnegarive square root of x. The two solutions
of the equation x2 =4 arex = v/4 =2 and x = —/4 = 2.

.

(3 ETYTJ-N:M The domain of the function A(x) = 2x 2 consists of all real
X2 —

numbers except x = —2 and x = 2. Expressed in terms of intervals,
D(f) =l—o0, =2[U]-2,2[U]2, o0l.

Most of the functions we encounter will have domains that are either intervals or
unions of intervals.

The domain of S(¢) = +/1 — 2 consists of all real numbers ¢ for
which 1 — #2 > 0. Thus we require that > < 1, or —1 < ¢t < 1. The domain is the

closed interval [—1, 1].
||

Graphs of Functions

An old maxim states that “a picture is worth a thousand words.” This is certainly
true in mathematics; the behaviour of a function is best described by drawing its
graph.

The graph of a function f is just the graph of the equation y = f(x). It
consists of those points in the Cartesian plane whose coordinates (x, y) are pairs of
input-output values for f. Thus (x, ¥) lies on the graph of f provided x is in the
domain of f and y = f(x).



SECTION P4: Functions and Their Graphs 29

Drawing the graph of a function f sometimes involves making a table of
coordinate pairs (x, f(x)) for various values of x in the domain of f, then plotting
these points and connecting them with a “smooth curve.”

Table 1. R L Graph the function f(x) = x2.
X y=fx) .
) 4 Solution Make a table of (x, y) pairs that satisfy y = x2. (See Table 1.) Now
1 1 plot the points and join them with a smooth curve. (See Figure P.36(a).)
0 0 "
1 1
2 4
y y
(-2.4) ‘ e 29 ! 2.4
LD (1,1) LD (1,
Figure P.36 . .
(a) Correct graph of f(x) = x?
(b) Incorrect graph of f(x) = x? (a) (b)

How do we know the graph is smooth and doesn’t do weird things between the
points we have calculated (for example, as shown in Figure P.36(b))? We could, of
course, plot more points, spaced more closely together, but how do we know how
the graph behaves between the points we have plotted? In Chapter 4, calculus will
provide useful tools for answering these questions.

Some functions occur often enough in applications that you should be famil-
iar with their graphs. Some of these are shown in Figures P.37-P.46. Study them for

y y 1
y=x
C y=c
1D
X X
(-1 D
X
Figure P.37 The graph of a Figure P.38 The graph of Figure P.39 The graph of

constant function f(x) = ¢ fx)=x fx) = x2
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Figure P.40 The graph of
flx)=Jx
y
(=1, -1
Figure P.43 The graph of
Flx)y=1/x
y
y=-x y==
-LD (1. b
Figure P.46 The graph of
flx) = |x|

X X
(-1.-1) 1
Figure P.41 The graph of Figure P.42 The graph of
fo =2 f@ =7
y y
1 y=+1—x2
P
1D ~1 I ox
X
Figure P.44  The graph of Figure P.45  The graph of
S =1/x f@) =1 -2
y 2—x
Yronvy=
A Rl
L \2

y=1l+Vx—4 o Teee——
U T
5.2 \—2'

C)) by =1

X

Figure P.47 The graph of y = /x . 2—x
shifted right 4 units and up 1 unit Figure P.48 The graph of

x—1

a while; they are worth remembering. Note, in particular, the graph of the absolute
value function, f(x) = |x|, shown in Figure P.46. It is made up of the two
half-lines y = —x forx < 0 and y = x forx > 0.

If you know the effects of vertical and horizontal shifts on the equations repre-
senting graphs (see Section P.3), you can easily sketch some graphs that are shifted
versions of ones in Fiﬂur§s P,f7—P[4ﬂ



y
y=« 1 —7
'—dl \_»x
' ¥
[}
[y M
\‘\ 'l
y=—/1—x2

Figure P.49 The circle x2 + y2 = 1
is not the graph of a function

mon |3
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Sketch the graphof y = 1+ +x — 4.

Solution This is just the graph of y = /x in Figure P.40 shifted to the right 4

units (because x is replaced by x — 4) and up ! unit. See Figure P.47.
_n

X
ST VIR M Sketch the graph of the function f(x) = 1
X —
Solution It is not immediately obvious that this graph is a shifted version of a
known graph. To see that it is, we can divide x — 1 into 2 — x to get a quotient of
—1 and a remainder of 1:

2—x —x+1+1 —-G-D+1 - 1
x—1 x=-1 x—1 - x—1

Thus, the graph is that of 1/x from Figure P.43 shifted to the right 1 unit and down
1 unit. See Figure P.48.
B

Not every curve you can draw is the graph of a function. A function f can
have only one value f(x) for each x in its domain, so no vertical line can intersect
the graph of a function at more than one point. If a is in the domain of function
f, then the vertical line x = a will intersect the graph of f at the single point
(a, f(a)). The circle x? + y? = 1 in Figure P49 cannot be the graph of a function
since some vertical lines intersect it twice. It is, however, the union of the graphs
of two functions, namely,

y=+1-—2x2 and y=—v1—x2

which are, respectively, the upper and lower halves (semicircles) of the given circle.

Even and Odd Functions; Symmetry and Reflections

It often happens that the graph of a function will have certain kinds of symmetry.
The simplest kinds of symmetry relate the values of a function at x and —x.

Even and odd functions

Suppose that —x belongs to the domain of f whenever x does. We say that f
is an even function if

f(=x)=f(x) for every x in the domain of f.
We say that f is an odd function if

f(=x)=—f(x) for every x in the domain of f.

x2, x4 ..., x72, x7*, ... are even functions, and odd powers such as x! = x, x3

The names even and odd come from the fact that even powers such as x? = 1,

2 .4 —2 -4

..., x7 ', x7°, ...are odd functions. Observe, for example, that (—x)4 = x* and
(=x)3 = —x3.
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Since (—x)2 = x2, any function that depends only on x2 is even. For instance,
the absolute value function y = |x| = +/x* is even.
The graph of an even function is symmetric about the y-axis. A horizontal

straight line drawn from a point on the graph to the y-axis will, if continued an
equal distance on the other side of the y-axis, come to another point on the graph.

(See Figure P.50(a).)
Y y=f(x) '
y=f)
o [
X i . \A"// X X
Figure P.50
(a) The graph of an even function is

symmetric about the y-axis
(b) The graph of an odd function is

symmetric about the origin (a) (b)

The graph of an odd function is symmetric about the origin. A straight line
drawn from a point on the graph to the origin will, if continued an equal distance
on the other side of the origin, come to another point on the graph. If an odd
function f is defined at x = 0, then its value must be zero there: f(0) = 0. (See
Figure P.50(b).)

If f(x) is even (or odd), then so is any constant multiple of f(x) such as
2f(x) or =5 f(x). Sums (and differences) of even functions are even; sums (and
differences) of odd functions are odd. For example, f(x) = 3x* — 5x? — 1 is even,
since it is the sum of three even functions: 3x*, —5x2, and —1 = —x°. Similarly,
4x3 — (2/x) is an odd function. The function g(x) = x? — 2x is the sum of an even
function and an odd function, and is itself neither even nor odd.

Other kinds of symmetry are also possible. For example, the function
glx) = x2 — 2x can be written in the form glx) = (x — 1) — 1. This shows
that the values of g(1 £ u) are equal, so the graph (Figure P.51(a)) is symmetric
about the vertical line x = 1; it is the parabola y = x? shifted I unit to the right and
1 unit down. Similarly, the graph of h(x) = x* + 1 is symmetric about the point
(0, 1) (Figure P.51(b)).

y y

Figure P.51 . 1 . l N /" O, D
i 2 1 L L x

(a) The graph of g(x) = x? — 2x is !
symmeltric about x = 1. | /

(b) The graphof y = h(x) = x3 + 1 : i
is symmetric about (0, 1). (a) (b)

Reflections in Straight Lines

The image of an object reflected in a plane mirror appears to be as far behind the
mirror as the object is in front of it. Thus, the mirror bisects the line from the object
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to the image at right angles. Given a line L and a point P not on L, we call a point
Q the reflection, or the mirror image, of P in L if L is the right bisector of the
line segment P Q. The reflection of any graph G in L is the graph consisting of the
reflections of all the points of G.

Certain reflections of graphs are easily described in terms of the equations of
the graphs:

Reflections in special lines

1. Substituting =x inplace of x in an equation in x and y corresponds
to reflecting the graph of the equationin the y-axis.

2. Substituting —y in place of y in an equation in x and y corresponds
toreflecting the graph of the equation-in the x-axis.

3. Substituting a = x in place of x ini an equation inx and y corresponds
to reflecting the graph of the equation in the line x = a/2.

4. Substituting b — y in place of y in an equation in x and y corresponds
to reflecting the graph of the equationin the line y =b/2.

5. Interchanging x-and yin an equation in x and.y corresponds to
reflecting the graph of the equation in the line y = x.

Describe and sketch the graph of y = «/Z — x — 3.

Example 9

Solution The graph of y = /2 — x is the reflection of the graph of y = /x
(Figure P.40) in the vertical line x = 1. The graph of y = +/2 — x — 3 is the result
of lowering this reflection by 3 units. See Figure P.52(a).

|
y
)= 2-x x=1 e
______ 4. i _—””";’:ﬁ y=2—|x+3|
* : /

Figure P.52 \ y=+2—x-3
(a) Constructing the graph of \ Ty = —|x + 3]

y=42—x-3
(b) Transforming y = |x] to produce )

the coloured graph (a) (b)

S CILTIERIE  Express the equation of the coloured graph in Figure P.52(b) in
terms of the absolute value function |x|.

Solution We can get the coloured graph by first reflecting the graph of |x|
(Figure P.46) in the x-axis and then shifting the reflection left 3 units and up 2
units. The reflection of y = |x| in the x-axis has equation —y = |x|, or y = —|x]|.
Shifting this left 3 units gives y = —|x + 3|. Finally, shifting up 2 units gives
y = 2 — |x + 3|, which is the desired equation.
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Defining and Graphing Functions with Maple

Many of the calculations and graphs encountered in studying calculus can be pro-
duced using a computer algebra system such as Maple or Mathematica. Here and
there, throughout this book, we will include examples illustrating how to get Maple
to perform such tasks. (The examples were done with Maple 6, but most of them
will work with earlier versions of Maple as well.)

We begin with an example showing how to define a function in Maple and
then plot its graph. We show in colour the input you type into Maple and in black
Maple’s response. Let us define the function f(x) = x* — 2x? — 12x + 1.

> f 1= x ->» xX"3-2*x"2-12*x+1; <enter>

fi=x — x?—2x—12x +1
Note the use of : = to indicate the symbol to the left is being defined and the use of
-> to indicate the rule for the construction of f(x) from x. Also note that Maple
uses the asterisk * to indicate multiplication and the caret ~ to indicate an exponent.
A Maple instruction must end with a semicolon ; before the Enter key is pressed.
Hereafter we will not show the <enter> in our input.

We can now use f as an ordinary function:
> f£(t)+L(1);

=22 — 12t - 11
Let us plot the graph of f on the interval [—4, 5].
> plot(f(x), x=-4..5);

We could have specified the expression x“3-2*x"2-12*x+1 directly in the plot
command instead of first defining the function f(x). Note the use of two dots . .
to separate the left and right endpoints of the plot interval. Other options can be
included in the plot command; all such options are separated with commas. You
can specify the range of values of y in addition to that for x (which is required),
and you can specify scal ing=CONSTRAINED if you want equal unit distances
on both axes. (This would be a bad idea for the graph of our f(x). Why?) The
modified command looks like this. (The output graph is omitted.)

> plot(f(x), x=-4..5, y=-40..30, scaling=CONSTRAINED) ;
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In Exercises 1-6, find the domain and range of each function.

1. f(x)=1+x? 2. f)=1-4x
3. G(x) =+/8—2x 4, F(x)=1/(x =1
t 1
. h() = 6. = —
5. h(1) — /6. g(x) S
T graph (a) graph (b)
—> X + X
graph (c) graph (d)
X > X
Figure P.53

7. Which of the graphs in Figure P.53 are graphs of functions
y = f(x)? Why?
y y
graph (a)

~J

g
graph (c)

graph (b)

\ x

graph (d)

\ x

Figure P.54
8. Figure P.54 shows the graphs of the functions: (i) x — x%,
(i) x* —x*, (i) x(1 = x)*, (iv) x> — x>. Which graph
corresponds to each function?
In Exercises 910, sketch the graph of the function f by first
making a table of values of f(x) atx =0, x = +1/2, x = +1,
x ==4£3/2,and x = £2.

9. fx)=x* 10. f(x) = x*?

In Exercises 11-22, what (if any) symmetry does the graph of f
possess? In particular, is f either even or odd?

11 f(x) =x>+1 12, f(x)=x+x

13. f(x)=xz_1 14. f(x):xz_1
15, f(x) = —— 16 fx)= ——

x =2 x+4
17. f(x) =x%—6x 18. f(x)=x>-2
19. f(x) =%} /200 o) =x+1]
21 f(x) =/2x L2 f) =V - 12
Sketch the graphs of the functions in Exercises 23-38.
23, f(x) = —x7 24, f(x)=1-x>
25, fx)=(x—1)2 26 f(x)=(x~-D2+1
27. f(x)=1-x° 28. fx) = (x +2)°
29, F() =7 +1 30, Fly=+x+1
31, f(x) = —|x]| 32 fx)=x|—1
33 f(x)=x—2| M. f(x)=1+1x -2
35, f(x) = x—i-i 36. f(x) = Z_i_x
3. f(x) = xil 38. /()= 1 ix

In Exercises 39-46, f refers to the function with domain [0, 2]
and range [0, 1], whose graph is shown in Figure P.55. Sketch
the graphs of the indicated functions and specify their domains
and ranges.

39. f(x)+2 4. f(x)—1
1. f(x+2) 2 fx-1)
43. —f(x) 4. f(—x)
45. f(4—-x) y 46. 1 — f(1—x)
1,1
y=fx)
" g X
2
Figure P.55

It is often quite difficult to determine the range of a function
exactly. In Exercises 4748, use a graphing utility (calculator or
computer) to graph the function f, and by zooming in on the
graph determine the range of f with accuracy of 2 decimal
places.
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x+2 x—1 3—2x +x7

o 47. =———— Ppm48. == = =t
47 f(x) PR S P 50. f(x)_l—lx-i-xz

In Exercises 49-52, use a graphing utility to plot the graph of the

given function. Examine the graph (zooming in or out as

necessary) for symmetries. About what lines and/or points are x — 2x2 + 3x

the graphs symmetric? Try to verify your conclusions 51 f(x) = Y B 52 f(x0)= 2 iax+s

algebraically. 53. What function f(x), defined on the real line R, is both even
49. f(x) = 63 +9x7 =1 and odd?

Functions can be combined in a variety of ways to make new functions. In this
section we examine combinations obtained

(a) algebraically, by adding, subtracting, muitiplying, and dividing functions;
(b) by composition, that is, taking functions of functions; and

(¢) by piecing together functions defined on separate domains.

Sums, Differences, Products, Quotients, and Multiples

Like numbers, functions can be added, subtracted, multiplied, and divided (except
where the denominator is zero) to produce new functions.

Combining functions

If f and g are functions, then for every x that belongs to the domains of both
f and g we define functions f + g, f — g, fg,and f/g by the formulas:

(f+8x)= fx)+gx)
(f—9x) = fx)—gkx)
(fe)(x) = f(x)g(x)

(’Ji) (x) = f(x), where g(x) # 0.
g 8(x)

A special case of the rule for multiplying functions shows how functions can be
multiplied by constants. If ¢ is a real number, then the function cf is defined for all
x in the domain of f by

(cHHx) =c fx).

Figure P.56(a) shows the graphs of f(x) = x2, g(x) = x — 1,
and their sum (f + g)(x) = x> + x — 1. Observe that the height of the graph of
f + g at any point x is the sum of the heights of the graphs of f and g at that point.
]
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y
y=f )

y=f)

y=(+8k)

@ (f+8x) = fx)+gkx)
(b) g(x) =(0.5 f(x)

(a) (b)

X

y=05f(x)

Figure P.56(b) shows the graphs of f(x) = 2 — x2 and the multiple

g(x) = (0.5) f(x). Note how the height of the graph of g at any point x is half the

height of the graph of f there.

m The functions f and g are defined by the formulas

Fx) =x and gx)=+1-—x.

Find formulas for the valuesof 3f.,f + g, f — g, fg. f/g,and g/f at x, and specify

the domains of each of these functions.

Solution The information is collected in Table 2:

Table 2. Combinations of f and g and their domains

Function Formula Domain
S fx)=4x [0, oo
g gx)=+1-x ]—o0, 1]
3f BHEx)=3x [0, oo[

f+eg (f+9@)=fx)+gx)=/x+/T—x [0, 1]
f—8 (f—9X) =fx)—gx)=Vx—+V1—x [0, 1]
fg (fe)(x) = f)g(x) = /x(1 —x) [0, 11
flg L= @ _ | x [0, 11
g g(x) 1—x

] _
e/f 8y =89 a 10, 1]

f fe Vo x

Note that most of the combinations of f and g have domains

[0, 00 N J—o0, 1] = [0, 1],

the intersection of the domains of f and g. However, the domains of the two
quotients f/g and g/f had to be restricted further to remove points where the

denominator was zero.
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Figure P.57

fogx)= f(gx))

Composite Functions

There is another method, called composition, by which two functions can be
combined to form a new function.

Composite functions
If f and g are two functions, the compeosite function f o g is defined by

foglx) = f(glx)).

The domain of f o g consists of those numbers x in the domain of g for which
g(x) is in the domain of f. In particular, if the range of g is contained in the
domain of f, then the domain of f o g is just the domain of g.

As shown in Figure P.57, forming f o g is equivalent to arranging the “function
machines” g and f in an “assembly line” so that the output of g becomes the input
of f.

In calculating fog(x) = f(g(x)) we first calculate g (x) and then calculate f of
the result. We call g the inner function and f the outer function of the composition.
We can, of course, also calculate the composition g o f(x) = g(f(x)), where f
is the inner function, the one that gets calculated first, and g is the outer function
which gets calculated last. The functions f o g and g o f are usually quite different,
as the following example shows.

S'EN TN Given f(x) = A/x and g(x) = x + 1, calculate the four composite
functions f o g(x), g o f(x), f o f(x), and g o g(x), and specify the domain of
each.

Solution Again, we collect the results in a table

Table 3. Composites of f and g and their domains

Function Formula Domain
f fx)=Vx [0, oo[

g gx)=x+1 R
fog fog)=fx))=fGx+D)=vx+1 [—1, 00[
gof gof(x)=g(f(x) =g(Vx)=Vx+1 [0, ool

fof fof(x)=f(fx)=f(Jx) =J/x=x'* [0, oo
gog goglxy=gx))=gCx+H=x+D+1=x+2 R

To see why, for example, the domain of f o gis[—1, co[, observe that g(x) = x + 1
is defined for all real x but belongs to the domain of f only if x 4+ 1 > 0, that is, if
x > —1.

1—x
IfGx) = P calculate G o G(x) and specify its domain.

Solution We calculate



y=Hx)
=1
1 0__.;)}—-
y=0
X
Figure P.58 The Heaviside function
Y1
y=1
X
= -1
Y b—1
y = sgn (x)
Figure P.59 The signum function
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1—x
—x l_1_’_35_14—)5—14—)6
) - 1-x " 14+x4+1-x
1+x
Because the resulting function, x, is defined for all real x, we might be tempted to
say that the domain of G o G is R. This is wrong! To belong to the domain of
G o G, x must satisfy two conditions:

L+

1
GoG(x):G(G(x)):G(l+x

(i) x must belong to the domain of G, and
(ii) G(x) must belong to the domain of G.

The domain of G consists of all real numbers except x = —1. If we exclude
x = —1 from the domain of G o G, condition (i) will be satisfied. Now ob-
serve that the equation G(x) = —1 has no solution x, since it is equivalent to
1 —x = —(1 +x) or I = —1. Therefore, all numbers G (x) belong to the domain
of G, and condition (ii) is satisfied with no further restrictions on x. The domain of
G o G is ]—o0, —1[U]—1, oo[, that is, all real numbers except —1.

u

Piecewise Defined Functions

Sometimes it is necessary to define a function by using different formulas on
different parts of its domain. One example is the absolute value function

|x|_{x ifx >0
T l—x ifx <O.

Here are some other examples:

SENVIY M The Heaviside function. The Heaviside function (Figure P.58) (or

unit step function) is defined by

1 ifx=>0

H(")z{o ifx <0.

The function H (¢) can be used, for example, to model the voltage applied to an
electric circuit by a one volt battery if a switch in the circuit is closed at time t = 0.
|

1 o——" m The signum function. The signum function (Figure P.59) is defined

by

X 1 ifx >0,
sgn(x)=r—|= -1 ifx <0,
* undefined if x = 0.

The name signum is the Latin word meaning “sign.” The value of the sgn(x) tells
whether x is positive or negative. Since O is neither positive nor negative, sgn (0) is
not defined. The signum function is an odd function.

|
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Figure P.60
functions

Piecewise defined

3l JJK: M The function

x+D? ifx < -1,
fx)=1—x if-1<x<l,
x—1 ifx=>1,

is defined on the whole real line but has values given by three different formulas
depending on the position of x. Its graph is shown in Figure P.60(a). Note how
solid and hollow dots are used to indicate, respectively, which endpoints do or do
not lie on various parts of the graph.

2,2

(-1, -1

(a) (b)

S €l N  Find a formula for function g(x) graphed in Figure P.60(b).

Solution The graph consists of parts of three lines. For the part x < —1, the line
has slope —1 and x-intercept —2, so its equation is y = —(x + 2). The middle
section is the line y = x for —1 < x < 2. The right section is y = 2 for x > 2.
Combining these formulas, we write

—(x+2) ifx <-—1
glx) =1 +x if—1<x=<2
2 ifx > 2.
Unlike the previous example, it does not matter here which of the two possible

formulas we use to define g(—1), since both give the same value. The same is true
for g(2).

The following two functions could be defined by different formulas on every interval
between consecutive integers, but we will use an easier way to define them.

The greatest integer function. The function whose value at any
number x is the greatest integer less than or equal fo x is called the greatest integer
function, or the integer floor function. It is denoted | x |, or, in some books, [x] or
[[x]]. The graph of y = | x] is given in Figure P.61(a). Observe that

12.4] =2, 11.9] =1, [0] =0, |-1.2] = —2,
12] = 2, 0.2] =0, [-0.3] = —1, |-2] = —2.
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y y4
y=lx] —0 y=[x] o—e
*=—0 o—e
*=——0 o—e
1 &—0 | Qg
1 ; - l X
— O
—o0 o—e
@0 o—e

Figure P.61 *—5 Ot
(a) The greatest integer function | x|
(b) The least integer function [x] (a) (b)

The least integer function. The function whose value at any

number x is the smallest integer greater than or equal to x is called the least
integer function, or the integer ceiling function. It is denoted [x]. Its graph is
given in Figure P.61(b). For positive values of x, this function might represent, for
example, the cost of parking x hours in a parking lot that charges $1 for each hour

or part of an hour.

_u

|Exercises P5

In Exercises 1-2, find the domains of the functions f + g, Table 4.
f—g. fg. f/g,and g/f, and give_formulas for their values. Fx) g(x) fogx)
1. f(x)=ux, gx)y=+vx—1 ” > 1l
. X X
2. f(x) =1 —ux, gx)=+1+x 12. x4 4 X
Sketch the graphs of the functions in Exercises 3—6 by combining 13. Jx | x|
the graphs of simpler functions from which they are built up. 14. x1/3 2x +3
5 15. x+1)/x x
3 x—x 4. —x 16. x—1 1/x2
S x +Ixl 6. x| +x ~2| 17. Use a graphing utility to examine in order the graphs of the
7. If f(x) = x +5and g(x) = x*> — 3, find the following: functions
@ fog) (b g(f ()
po© flegx) (d goflx) y = /X, y=2+x,
@) fof(=5) " gg2)
. { =2+4++3+x, =1/C+ 3+ x).
L@ ) ) gogx) Y=y y=1@HVIED
In Exercises 810, construct the following composite functions Describe the effect on the graph of the change made in the
and specify the domain of each. function at each stage.
@ fofw b fog() 18 R - . .
N . Repeat the previous exercise for the functions
© gofx) (@ gog) peatihep

8. f(x)=2/x, gx)=x/(l —x)

9. fix)y=1/(1 —x), gx) =vx—1

10. f(x) = (x+ 1)/(x = 1), g(x) =sgn(x)
Find the missing entries in Table 4 (Exercises 11-16).

y:2x, y=2x—1, y=1—2x,

1 1
:\/1—2)()7 = —m, :——1.
Y Y V1 —=2x Y V1 —=12x
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In Exercises 19-24, f refers to the function with domain [0, 2] 32. Sketch the graph of the function
and range {0, 1], whose graph is shown in Figure P.62. Sketch
the graphs of the indicated functions and specify their domains Fx) = { lx] ifx>0
and ranges. “lx] ifx <.
19. 2f(x) 20. —(1/2) f(x) Why is f(x) called the integer part of x?
21, f(2x) 22. f(x/3) Even and odd functions
33. Assume that f is an even function, g is an odd function, and
B0+ = 2426 =D/2) both f and g are defined on the whole real line R. Is each of
the following functions even, odd, or neither?
1,1
2 fHe fe. fle slf fP=ff =g
y =[x
fog, gof [fof. goz
X
2
34. If f is both an even and an odd function, show that
J(x) = 0 at every point of its domain.
Figure P.62 35. Let f be a function whose domain is symmetric about the

In Exercises 2526, sketch the graphs of the given functions. origin, that is, —x belongs (o the domain whenever x does.

X ifo<x <1
25. f(x)_{z—x ifl<x<2
fo<x <1
26. :{ﬁ Th=x=
SO =12y ifl<x<2
27. Find all real values of the constants A and B for which the

function F(x) = Ax -+ B satisfies: Hint: let E(x) = (f(x) + f(—x))/2. Sh h
int: let £(x) = x)+ f(—x . dhow that

(@) FoF(x)=F(x) forall x. E(—x) = E(x), so that E is even. Then show that

(b} FoF(x}=xforall x. O(x) = f(x) — E(x) is odd.
Greatest and least integer functions (b) Show that there is only one way to write f as the sum of
28. For what values of x is (a) [x] = 07 (b) [x] = 0? an even and an odd function. Hint: one way is given in
part (a). If also f(x) = E1(x) + Oy (x), where E| is
even and Oj is odd, show that E — E} = O] — O and
30. True or false: [—xT = —{x] for all real x? then use Exercise 34 to show that £E = £ and O = O).

(a) Show that f is the sum of an even function and an odd
function:

fx) = E@)+ 0),

where E is an even function and O is an odd function.

~—

29. What real numbers x satisfy the equation |x] = [x]?

31. Sketch the graph of y = x — |x].

Most people first encounter the quantities cost and sin# as ratios of sides in a
right-angled triangle having ¢ as one of the acute angles. If the sides of the triangle
are labelled “hyp” for hypote’ﬁﬁ’se, “adj” for the side adjacent to angle ¢, and “opp”
for the side opposite angle ¢ (see Figure P.63), then

adj . o
cost:—J and s1nt:ﬂ.
hyp hyp hyp
opp
These ratios depend only on the angle 7, not on the particular triangle, since all
¢ right-angled triangles having an acute angle ¢ are similar.

adj In calculus we need more general definitions of cos# and sin¢ as functions
Figure P.63 cost = adj/hyp defined for all real numbers t, not just acute angles. Such definitions are phrased

sint = opp/hyp in terms of a circle rather than a triangle.




SECTION P6: The Trigonometric Functions 43

Let C be the circle with centre at the origin O and radius 1; its equation is
x4+ y2 = 1. Let A be the point (1,0) on C. For any real number ¢, let P, be
the point on C at distance [7| from A, measured along C in the counterclockwise
direction if ¢ > 0, and the clockwise direction if z# < 0. For example, since C
has circumference 277, the point Py, is one-quarter of the way counterclockwise
around C from A; it is the point (0, 1).

We will use the arc length ¢ as a measure of the size of the angle AO P,. See
Figure P.64.

The radian measure of angle AO P, is ¢ radians:

/AOP, =t radians.

Prp

P, = (cost, sint)

1 arc length ¢

t (radians) A=(1,0)

Figure P.64 If the iength of arc A P,

! ) P_ap
is ¢ units, then angle A O P, = t radians

We are more used to measuring angles in degrees. Since P, is the point
(—1, 0), halfway (;r units of distance) around C from A, we have

7rradians =180°.

To convert degrees to radians, multiply by 7/180; to convert radians to degrees,
multiply by 180/7.

Angle convention

In calculus it is assumed that all angles are measured in radians unless
degrees or other units are stated explicitly, When we talk about the angle
/3, we mean 7t /3 radians (which is 60°), not /3 degrees.
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Figure P.65

Arclength s = rt
Sector area A = r2t/2

ITION n

y

m Arclength and sector area. An arc of a circle of radius r subtends
an angle 1 at the centre of the circle. Find the length s of the arc and the area A of
the sector lying between the arc and the centre of the circle.

Solution The length s of the arc is the same fraction of the circumference 277 of
the circle that the angle ¢ is of a complete revolution 27 radians (or 360°). Thus

t .
§ = — (27r) = rt units.
21

Similarly, the area A of the circular sector (Figure P.65) is the same fraction of the
area 7rr? of the whole circle:

t s
A= — (7r°) = — units”.
7 2

(We will show that the area of a circle of radius 7 is 7#2 in Section 1.1.)

t (rad) | A=(1,0)

Using the procedure described above we can find the point P, corresponding to any
real number ¢, positive or negative. We define cos? and sin ¢ to be the coordinates
of P,. (See Figure P.66.)

Cosine and sine

For any real ¢, the cosine of  (abbreviated cos ¢) and the sine of ¢ (abbreviated
sint) are the x- and y-coordinates of the point P;.

cost = the x-coordinate of P,
sin ¢ = the y-coordinate of P;

Because they are defined this way, cosine and sine are often called the circular
functions.

P, = (cost, sint)

Arc length ¢

I
I
I
|
!
I
|

sint

0

Ponpp=Fagpp=0.-1)

Figure P.66 The coordinates of P; are (cost, sint) Figure P.67 Some special angles
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Examining the coordinates of Py = A, Prp, Pr, and
P_n» = P32 in Figure P67, we obtain the following values:

T T 3n
cosO0=1 cos—=0 cosm= —1 COS(_E) :0057 =0
in0=0 sin—=1 s 0 i ”) sin I
= —_— = = —— }=8S1n--= -
sin sin > sin sin ( > 5
||

Some Useful Identities

Many important properties of cost and sint follow from the fact that they are
coordinates of the point P, on the circle C with equation x? + y* = 1.

The range of cosine and sine. For every real number 7,

—1 <cost <1 and — 1 <sint < 1.

The Pythagorean identity. The coordinates x = cost and y = sint of P,
must satisfy the equation of the circle. Therefore, for every real number ¢,

cos’t +sin*t=1

(Note that cos? f means (cos t)Z, not cos(cos t). This is an unfortunate notation, but
it is used everywhere in technical literature, so you have to get used to it!)

Periodicity. Since C has circumference 27, adding 27 to ¢ causes the point
P, to go one extra complete revolution around C and end up in the same place:
P12, = P,. Thus, for every ¢,

cos(f +2n) =cost  and sin(t + 2m) = sinft.

This says that cosine and sine are periodic with period 2.

Cosine is an even function. Sine is an odd function. Since the circle
x% 4+ y? = 1 is symmetric about the x-axis, the points P_, and P; have the same
x-coordinates and opposite y-coordinates (Figure P.68).

cos(-1)=cost  and  sin(—f) = - sint.

Complementary angle identities. Two angles are complementary if their sum
is w/2 (or 90°). The points P(;/2—, and P, are reflections of each other in the line
y = x (Figure P.69), so the x-coordinate of one is the y-coordinate of the other and
vice versa. Thus,

T . ; T
o (5’_ t) = sint and sin (E = t) == CO8L;

Supplementary angle identities. Two angles are supplementary if their sum
is  (or 180°). Since the circle is symmetric about the y-axis, P,_, and P; have the
same y-coordinates and opposite x-coordinates. (See Figure P.70.) Thus,
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cos(m —t) =—cost  -and sin{r — £) = sinz.
y
¥y y
P B P,_ P,
P, = (cost, sint) G " r: S ’
: X 5 T
| 0 N4 v
@ P | S
5 1 . 1 x
—t ! X X
¢
P_; = (cos(—1), sin(—t))
Figure P.70
Figure P.68 cos(—t) = cost Figure P.69 cos((mw/2) —t) = sint cos(m —t) = —cost
sin(—t) = —sint sin((w/2) —t) = cost sin(r — t) = sint

Some Special Angles

St SN Find the sine and cosine of 77/4 (that is 45°).

Solution The point P4 lies in the first quadrant on the line x = y. To find its
coordinates, substitute y = x into the equation x> 4 y*> = 1 of the circle, obtaining

y
x | 2x? =1. Thus x = y = 1/+/2, (see Figure P.71) and
x4 y2 =1 T 1 T 1
cos(45°) =cos — = —, sin(45°) = sin — = —.
4 2 4 N2

Figure P.71 sin r_ cos T_
4 4

s

[

1
V2 : . : .
S EIGJEEN  Find the values of sine and cosine of the angles 7/3 (or 60°) and
/6 (or 30°).

Solution The point Py 3 and the points O(0, 0) and A(1, 0) are the vertices of an

y Pos = ( i ﬁ) equilateral triangle with edge length 1 (see Figure P.72). Thus P, /3 has x-coordinate
** 2 /1 172 and y-coordinate v/1 — (1/2)2 = +/3/2, and
1 ' 3
cos(60°) = cos T =, sin(60°) = sin I £
3 2 3 2
o] 1 1 x T m om
2 2 Since — = — — —, the complementary angle identities now tell us that
24422 6 2 3
3 1
cos(30°) = cos% = sin% = %, sin(30°) = sin% = cos% = 7
Figure P.72 cosm/3=1/2 u

sinz/3 = v/3/2 Table 5 summarizes the values of cosine and sine at multirles of 30° and 45°
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Figure P.73 Using suitably placed

triangles to find trigonometric functions
of special angles

Figure P.74

Figure P.75

The graph of cos x

The graph of sin x
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between 0° and 180°. The values for 120°, 135°, and 150° were determined by
using the supplementary angle identities; for example,

c08(120°) = cos (%t) = CoS (n — %) = —cos (%) = —cos(60°) = —%.

Table 5. Cosines and sines of special angles
Degrees 0° 30° 45° 60° 90° 120° 135° 150°  180°
Radi 0 4 b4 T T 2w 37 S5
— — — — — — — T
acians 6 4 3 2 3 4 6
NI 1 1 1 V3
Cosi 1 — — - 0 e |
osine 3 7 3 3 7 5
1 1 1 1
Sine 0 — — \—/_E 1 ﬁ — - 0
2 /2 2 2 V2 2

W Find: (a) sin(37/4) and (b) cos(4r/3).
Solution We can draw appropriate triangles in the quadrants where the angles lie
to determine the required values. See Figure P.73.

(a) sin(37/4) = sin(w — (7/4)) = 1//2.

(b) cos(4m/3) =cos(m + (7/3)) = —%.

_m

While decimal approximations to the values of sine and cosine can be found using
a scientific calculator or mathematical tables, it is useful to remember the exact
values in the table for angles 0, 7 /6, 7 /4, w /3, and 7 /2. They occur frequently in
applications.

When we treat sine and cosine as functions we can call the variable they depend
on x (as we do with other functions), rather than ¢#. The graphs of cos x and sinx
are shown in Figures P.74 and P.75. In both graphs the pattern between x = 0 and
x = 2m repeats over and over to the left and right. Observe that the graph of sin x
is the graph of cos x shifted to the right a distance 7 /2.

y

- - - - - 4%

) .
y = cosx ‘
m\/ ‘ x

<
[
|

1 y =sinx
h )
‘ X
: il —%/2 : Ed

—3n/2
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Figure P.76

PP = P54 A

Remember this!

When using a scientific calculator to calculate any trigonometric functions,
be sure you have selected the proper angular mode: degrees or radians.

The Addition Formulas
The following formulas enable us to determine the cosine and sine of a sum or

difference of two angles in terms of the cosines and sines of those angles.

Addition Formulas for Cosine and Sine

cos(s +1) = cosscost —sinssin¢
sin(s + 1) =sinscost + cosssint
cos(s = t) = cos s cost -+ sinis-sint

sin(s — 1) = sin s COSt — cOS'§ Sin £

PROOF We prove the third of these formulas as follows: Let s and t be real
numbers and consider the points

P, = (cost, sint) P, = (cos(s — t), sin(s — 1))

P; = (coss, sins) A= (1,0),
as shown in Figure P.76.
¥

Py

. /,’,’//,,

1 s

2 4yr=1
t
\ 0

The angle P, O P; = s — t radians = angle AO P,_,, so the distance P P, is equal
to the distance P,_,; A. Therefore, (P; P,)® = (P,_, A)%. We express these squared
distances in terms of coordinates and expand the resulting squares of binomials:

(coss — cost)? + (sins — sin#)? = (cos(s — 1) — 1) + sin®(s — 1),

cos’s —2coss cost + cos’ t + sin®s — 2sins sinf + sin? ¢

A e A TR
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Since cos? x + sin? x = 1 for every x, this reduces to
cos(s —t) = cosscost + sinssin?.

Replacing ¢ with —7 in the formula above, and recalling that cos(—f) = cos¢? and
sin(—t) = — sint, we have

cos(s + 1) = cosscost —sinssint.

The complementary angle formulas can be used to obtain either of the addition
formulas for sine:

sin(s + ) = cos (% —(s+ t))
T
—eos((Z-5) )
T . (T .
= COS (—2— - s) cost + sin (5 - s) sint
= sins cost? + cosssinf,

and the other formula again follows if we replace ¢ with —z.

-]
STETNTILY  Find the value of cos(r/12) = cos 15°.
Solution
il os(n n) oﬂco”—f—'n'nn
cos— =cos|— — — } = cos — cos — + sin — sin —
12 3 3% 357
_(1><1>+ V3 (1)_1+J§
\2/\\2 2 J\V2) " 22
| |

From the addition formulas, we obtain as special cases certain useful formulas
called double-angle formulas. Put s = ¢ in the addition formulas for sin(s + ¢t)
and cos(s + ) to get

sin2t =2sint cost? and

cos2t = cos’t — sin® ¢
=2cos’t —1 (using sin?¢ + cos?t = 1)
=1-—2sin’t

Solving the last two formulas for cos” ¢ and sin® ¢, we obtain

1 —cos2t¢
cO8"t = ———— and sin?t = —————
2 2
which are sometimes called half-angle formulas because they are used to express

trigonometric functions of half of the angle 2r. Later we will find these formulas
useful when we have to integrate powers of cosx and sin x.
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Other Trigonometric Functions

Thetre are four other trigonometric functions—tangent (tan), cotangent (cot), secant
(sec), and cosecant (csc)—each defined in terms of cosine and sine. Their graphs
are shown in Figures P.77-P.80.

| y I | y |
! ! | |
! ! I I
! ! I I
! ! I I
! ! | |
! ! 1 I
! ! I I
| | | y =cotx |
1 ! | |
! ! I I
! ! I I
I 1 p---- / l \ 1t- |
iz N I fid z |
2 : 2 B :

! P2 N\ ' : AN '

—n ! n ! ks X RS S N\ T I \
! 4 ! i 4 I
I I | )
| I | |
I I | |
i I | |
1 I | |
| I | |
I I |y =tanx | |
| I | |
I I | |
I I | |
I 1 | |
I 1 | |
I | ) )

Figure P.77 The graph of tan x Figure P.78 The graph of cot x
1 I
| |
| i
I i
I I
I I
I I
I I
I I
I I
I I
I I
I I
z i T 1 |
2 i I —n 2 : |2

: X I ! 7 I X
: 1 ! 5 1
: [ —1 I
I I
I I
I !
I I
| I
: y =cscx :
I I
1 l
l I
i 1
I i

Figure P.79 The graph of sec x Figure P.80 The graph of csc x
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Tangent, cotangent, secant, and cosecant

sin ¢

tanf = —— sect = ——
cost cost
cost 1 1

cotf = —=—— csct = —
sin ¢ tanft sint

Observe that each of these functions is undefined (and its graph approaches vertical
lines) at points where the function in the denominator of its defining fraction has
value 0. Observe also that tangent, cotangent, and cosecant are odd functions and
secant is an even function. Since |sinx]| < 1 and |cosx| < 1 forall x, |cscx| > 1
and | sec x| > 1 for all x where they are defined.

The three functions sine, cosine, and tangent are called the primary trigono-
metric functions while their reciprocals cosecant, secant, and cotangent are called
the secondary trigonometric functions. Scientific calculators usually just imple-
ment the primary functions; you can use the reciprocal key to find values of the
corresponding secondary functions. Figure P.81 shows a useful pattern called the
“CAST rule” to help you remember where the primary functions are positive. All
three are positive in the first quadrant, marked A. Of the three, only sine is positive
in the second quadrant S, only tangent in the third quadrant T, and only cosine in
the fourth quadrant C.

3
IR  Find the sine and tangent of the angle  in [n, 771:] for which

1
cosf = ——.
3
Solution From the Pythagorean identity sin® 6 + cos” 8 = 1 we get

1 8 8 2V2
sinff=1--=-, so sinf=1= S .22

9 9 9 3
The requirement that 6 should lie in [, 37 /2] makes 6 a third quadrant angle. Its
sine is therefore negative. We have

242 ing  —2+2
sinf = ——\/_ and tanf = Y _ 7\/—/3 =22
3 cosf —-1/3

Like their reciprocals cosine and sine, the functions secant and cosecant are periodic

with period 2. Tangent and cotangent, however, have period 7 because
sin{x + ) sin x COS 7t + COSx sin 7w —sinx

tan(x + ) = = - - = =tanx.
cos(x +m) COSXCOSTm —sinxsinm  —cosx

Dividing the Pythagorean identity sin® x + cos® x = 1 by cos? x and sin’ x, respec-
tively, leads to two useful alternative versions of that identity:

1+ tan®x = sec® x and 1+ cot? x = csc?x.
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Addition formulas for tangent and cotangent can be obtained from those for sine
and cosine. For example,

sin(s +¢) sins cost + cos s sin ¢

tan(s +¢) = = - —.
cos(s+1t) cosscost—sinssint

Now divide the numerator and denominator of the fraction on the right by coss cos ¢
to get
tans + tan ¢

tan(s +¢) = ——.
( ) 1 —tanstant

Replacing r by —f leads to
tans — tant
tan(s — 1) = ——.
1 +tanstant
Maple Calculations

Mapie knows all six trigonometric functions and can calculate their values and
manipulate them in other ways. It assumes the arguments of the trigonometric
functions are in radians.

> evalf(sin(30)); evalf(sin(Pi/6));
—.9880316241

.5000000000

Note that the constant Pi (with an upper case “P”) is known to Maple. The evalf ()
function converts its argument to a number expressed as a floating point decimal
with 10 significant digits. (This precision can be changed by defining a new value
for the variable Digits.) Without it the sine of 30 radians would have been left
unexpanded because it is not an integer.

> Digits := 20; evalf (100*Pi); sin(30);
Digits := 20
314.15926535897932385
sin(30)
It is often useful to expand trigonometric functions of multiple angles to powers
of sine and cosine, and vice versa.
> expand(sin(5*x));
16 sin(x) cos(x)* — 12 sin(x) cos(x)* + sin(x)
> combine((cos(x))"5, trig);

1 5 5
6 cos(5x) + 6 cos(3x) + % cos(x)

Other trigonometric functions can be converted to expressions involving sine
and cosine.

> convert(tan(4*x)*(sec(4*x))"2, sincos); combine(%,trig) ;
sin(4x)
cos(4x)?
sin(4x)
cos(12x) + 3 cos(4x)
The % in the last command referred to the result of the previous calculation.
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Figure P.85 In this triangle the sides
are named to correspond to the opposite
angles.
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Trigonometry Review

The trigonometric functions are so called because they are often used to express
the relationships between the sides and angles of a triangle. As we observed at the
beginning of this section, if § is one of the acute angles in a right-angled triangle,
we can refer to the three sides of the triangle as adj (side adjacent 8), opp (side
opposite ), and hyp (hypotenuse). The trigonometric functions of 6 can then be
expressed as ratios of these sides, in particular:

sin9=9—p—p cos&:—a—qj— tanf = opp

hyp’ hyp’ adj’
(S'E IR Find the unknown sides x and y of the triangle in Figure P.83.

Solution Here x is the side opposite and y is the side adjacent the 30° angle. The
hypotenuse of the triangle is 5 units. Thus

V3

1
)5—C=Sin30°=§ and §=COS3OO=7’

> it d > it
SO X = — units an = —— units.
2 Y=

3 &1 KN For the triangle in Figure P.84, express sides x and y in terms of
side a and angle 8.

Solution The side x is opposite the angle 6 and y is the hypotenuse. The side
adjacent 6 is a. Thus

X a
— =tanf and — = cosf.
a y

a
Hence,x = a tanf and y = —— = a secf.
cos 6

When dealing with general (not necessarily right-angled) triangles, it is often con-
venient to label the vertices with capital letters, which also denote the angles at
those vertices, and refer to the sides opposite those vertices by the corresponding
lower-case letters. See Figure P.85. Relationships among the sides a, b, and ¢ and
opposite angles A, B, and C of an arbitrary triangle A BC are given by the following
formulas, called the Sine Law and the Cosine Law.

in A i B .
Sine Law: sSinA — sinB sin C

a b ¢
Cosine Law:  a?> = b? + ¢ — 2bccos A
b* =da* +¢* —2accos B

¢t =a? +b*—2abcosC
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Figure P.86

PROOF Sce Figure P.86. Let h be the length of the perpendicular from A to the
side BC. From right-angled triangles (and using sin( — ) = sin if required), we
getcsin B = h = bsinC. Thus (sin B)/b = (sinC)/c. By the symmetry of the
formulas (or by dropping a perpendicular to another side), both fractions must be
equal to (sin A)/a, so the Sine Law is proved. For the Cosine Law, observe that

2 + (a — bcos C)? ifc< ™
5 2
T
h? + (a + beos(m — C))? if C > 5
=h2+ (@a—bcosC)? (since cos(mr — C) = —cos C)
= b%sin® C + a? — 2abcos C + b?cos’ C
=a’>+b*—2abcosC.

The other versions of the Cosine Law can be proved in a similar way.

(S EVLTIER VI A triangle has sides a = 2 and b = 3 and angle C = 40°. Find
side ¢ and the sine of angle B.

Solution From the third version of the Cosine Law:
=a>+b>—2abcosC =4+9 —12cos40° =~ 13 — 12 x 0.766 = 3.808.

Side ¢ is about +/3.808 = 1.951 uvnits in length. Now using Sine Law we get

sinC sin 40° 3 x 0.6428
~ 3 x ~

Sinsz ~ ~
¢ 1.951 1.951

2 (0.988.

A triangle is uniquely determined by any one of the the following sets of data (which
correspond to the known cases of congruency of triangles in classical geometry):

1. two sides and the angle contained between thern (e.g., Example 10);

2. three sides, no one of which exceeds the sum of the other two in length;
3. two angles and one side; or

4. the hypotenuse and one other side of a right-angled triangle.

In such cases you can always find the unknown sides and angles by using the
Pythagorean theorem or the Sine and Cosine Laws, and the fact that the sum of the
three angles of a triangle is 180° (or & radians).

A triangle is not determined uniquely by two sides and a non-contained angle;
there may exist no triangle, one right-angled triangle, or two triangles having such
data.
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In triangle ABC, angle B = 30°, b =2, and ¢ = 3. Find a.

Solution This is one of the ambiguous cases. By the Cosine Law

b =a> +c* —2accos B

4=4a%+9—6a(v/3/2).

Therefore, @ must satisfy the equation a®> — 3+/3a + 5 = 0. Solving this equation
using the quadratic formula, we obtain

_ 3/3+427-20
- 2
~1.275 or 3.921

There are two triangles with the given data, as shown in Figure P.87.

R / /\

b=2,¢c=3,B =230 ; a~1275 C a ~3.921

|Exercises P6

Find the values of the quantities in Exercises 1-6 using various - 17, Express sin 3x in terms of sinx and cos x.
formulas presented in this section. Do not use tables or a 18. Express cos 3x in terms of sinx and cos x.
Iculator. . . .
catena 03r 3 ) In Exercises 19-22, sketch the graph of the given function. What
1. cos Tﬂ 2. tan ——} 3. sin el is the period of the function?
Tn 57 llx 19. f(x) = cos 2x 20. F(x) = sin~
4. sin — 5. cos — 6. sin — 2
12 12 12 x
In Exercises 7-12, express the given quantity in terms of sin x 21, f(x) =sinmx v22. f(x) =cos —
and cos x. b4 ?
37 23. Sketch the graph of y = 2 cos (x — —).
7. cos(m + x) 8. sin(2w — x) 9. sin - - X 3

. 24. Sketch the graph of y = 1 + sin (x + z)
3n tanx — cotx . . 4 Lo .
10. cos| — +x } 11. tanx + cotx 12, — In Exercises 25-30, one of sinf, cos @, and tan 9 is given. Find
2 tanx + cotx . Co . .
the other two if 0 lies in the specified interval.
In Exercises 13-16, prove the given identities.

4 - 4

. 3 . T
13. cos™ x — sin” x = cos(2x) 25. sin¢ = 5’ ¢ in [E’n]
2

1-— si
14. ‘cosx - _mx tan ad 26. tanf =2, Oin [0, z]
sin x 1+ cosx 2 2
1— 1
15. — % a2 27. cos = ~, 6in [—z,o]
1 4+ cosx 2 3 2

- 16. w = sec2x —tan2x 28. cosez—-i, @ in [z,n]
cosx + sinx 13 2
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29, sin9=_—1, f in 71,3—7[
2 2

1
30. tand = —, Bin [n, 3_71j|
2 2

Trigonometry Review

In Exercises 3142, ABC is a triangle with a right angle at C.

The sides opposite angles A, B, and C are a, b, and c,
respectively. (See Figure P.88.)

A

Figure P.88
31. Findaandbifc =2, B =
32. Findaandcifb=2, B =

33. Findbandcifa=5,B =

AW WS

34. Express a in terms of A and c.
35. Express a in terms of A and b.
36. Express a in terms of B and c.
37. Express a in terms of B and b.
38. Express c in terms of A and a.
39. Express ¢ in terms of A and b.
40. Express sin A in terms of a and c.
41. Express sin A in terms of » and c.

42. Express sin A in terms of @ and b.

In Exercises 43-52, ABC is an arbitrary triangle with sides a, b,

and ¢, opposite to angles A, B, and C, respectively. (See
Figure P.89.) Find the indicated quantities. Use tables or a
scientific calculator if necessary.

43.

44,
45.

46.

47.

48.
49.
50.

51.

52.

o 54,

A
/C b
B a C
Figure P.89

FindsinBifa=4,b=3 A = %.
FindcosAifa =2,b=2,c=3.
FindsinBifa=2,b=73¢c=4.
Findcifa:Z,b=3,C:%
Findaifc =3, A = %,B:

Findcifa=2,b =3, C = 35°.
Findbifa = 4, B = 40°, C = 70°.

Findcifa =1, b = +/2, A = 30°. (There are two possible
answers.)

o WA

Two guy wires stretch from the top T of a vertical pole to
points B and C on the ground, where C is 10 m closer to the
base of the pole than is B. If wire BT makes an angle of 35°
with the horizontal, and wire CT makes an angle of 50°
with the horizontal, how high is the pole?

Observers at positions A and B 2 km apart simultaneously
measure the angle of elevation of a weather balloon to be
40° and 70°, respectively. If the balloon is directly above a
point on the line segment between A and B, find the height
of the balloon.

. Show that the area of triangle A BC is given by

(1/2)absin C = (1/2)bcsin A = (1/2)ca sin B.

Show that the area of triangle A BC is given by
/(s —a)(s — b)(s — ¢), where s = (@ + b + ¢)/2 is the
semi-perimeter of the triangle.

* This symbol is used throughout the book to indicate an exercise

that is somewhat more difficult and/or theoretical than most
exercises.




