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CHAPTER 12

Partial
Differentiation

Introduction This chapter is concerned with extending the idea of the derivative
to real functions of a vector variable, that is, to functions depending on several real
variables.

The notation y = f(x) is used to indicate that the variable y depends on the single
real variable x, that is, that y is a function of x. The domain of such a function f is
a set of real numbers. Many quantities can be regarded as depending on more than
one real variable and thus to be functions of more than one variable. For example,
the volume of a circular cylinder of radius 7 and height 4 is given by V = nr?h;
we say that V is a function of the two variables r and 4. If we choose to denote this
function by f, then we would write V = f(r, h) where

f(r b)) = mrh, (r=0, h>0).

Thus, f is a function of two variables having as domain the set of points in the rk-
plane with coordinates (r, k) satisfyingr > Oand 2 > 0. Similarly, the relationship
w= f(x,y,2) =x + 2y — 3z defines w as a function of the three variables x, y,
and z, with domain the whole of R?, or, if we state explicitly, some particular subset
of R3.

By analogy with the corresponding definition for functions of one variable, we
define a function of n variables as follows:

A function f of n real variables is a rule that assigns a unigue real number
f(x1,x2, ..., x,) to each point (xy, x7, ..., x,) in some subset D(f) of R".
D(f) is called the domain of f. The set of real numbers f(x, x2, ..., x,)
obtained from points in the domain is called the range of f.

As for functions of one variable, the domain convention specifies that the domain
of a function of n variables is the largest set of points (x;, x2, ..., x,) for which
f(x1,x2,...,x,) makes sense as a real number, unless that domain is explicitly
stated to be a smaller set.

Most of the examples we consider hereafter will be functions of two or three
independent variables. When a function f depends on two variables, we will
usually call these independent variables x and y, and we will use z to denote the
dependent variable that represents the value of the function; that is, z = f(x, y).
We will normally use x, y, and z as the independent variables of a function of three
variables and w as the value of the function: w = f(x, y, z). Some definitions will
be given, and some theorems will be stated (and proved) only for the two-variable
case, but extensions to three or more variables will usually be obvious.
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Figure 12.1 The graph of f(x, y)is
the surface with equation z = f(x, y)
defined for points (x, y) in the domain
of f

<

Figure 12.2

Figure 12.3

Graphical Representations

The graph of a function f of one variable (i.e., the graph of the equation y = f(x))
is the set of points in the xy-plane having coordinates (x, f(x)), where x is in
the domain of f. Similarly, the graph of a function f of two variables (the graph
of the equation 7 = f(x, y)) is the set of points in 3-space having coordinates
(x, v, f(x, y)), where (x, ¥) belongs to the domain of f. This graph is a surface
in R? lying above (if f(x,y) > 0) or below (if f(x,y) < 0) the domain of f in
the xy-plane. (See Figure 12.1.) The graph of a function of three variables is a
three-dimensional siypersurface in 4-space, R*. In general, the graph of a function
of n variables is an n-dimensional surface in R"*'. We will not attempt to draw
graphs of functions of more than two variables!

fen=3(1-3-2), (©=sxr=2 0sy=4-20.

The graph of f is the plane triangular surface with vertices at (2,0, 0), (0, 4, 0),
and (0, 0, 3). (See Figure 12.2.) If the domain of f had not been explicitly stated
to be a particular set in the xy-plane, the graph would have been the whole plane

through these three points.
—n

Consider f(x,y) = /9 —x2 — y2. The expression under the
square root cannot be negative, so the domain is the disk x> + y?> < 9 in the

xy-plane.
If we square the equation z = /9 — x2 — y?, we can rewrite the result in the
form x% + y2 +z2 = 9. This is a sphere of radius 3 centred at the origin. However,

the graph of f is only the upper hemisphere where z > 0. (See Figure 12.3.)
|

Since it is necessary to project the surface z = f(x, y) onto a two-dimensional
page, most such graphs are difficult to sketch without considerable artistic talent
and training. Nevertheless, you should always try to visualize such a graph and
sketch it as best you can. Sometimes it is convenient to sketch only part of a graph,
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for instance, the part lying in the first octant. It is also helpful to determine (and
sketch) the intersections of the graph with various planes, especially the coordinate
planes, and planes parallel to the coordinate planes. (See Figure 12.1.)

Some mathematical software packages will produce plots of three-dimensional
graphs to help you get a feeling for how the corresponding functions behave.
Figure 12.1 is an example of such a computer-drawn graph, as is Figure 12.4 below.
Along with most of the other mathematical graphics in this book, both were produced
using the mathematical graphics software package MG. Later in this section we
discuss how to use Maple to produce such graphs.

Figure 12.4 The graph of y
- TH
T 24 a4 y?

Another way to represent the function f(x, y) graphically is to produce a two-
dimensional fopographic map of the surface z = f(x,y). In the xy-plane we
sketch the curves f(x, y) = C for various values of the constant C. These curves
are called level curves of f because they are the vertical projections onto the xy-
plane of the curves in which the graph z = f(x, y) intersects the horizontal (level)
planes z = C. The graph and some level curves of the function f(x, y) = x> 4+ y?
are shown in Figure 12.5. The graph is a circular paraboloid in 3-space; the level
curves are circles centred at the origin in the xy-plane.

4

graph z=x2 42

level curves

,\-2+y2
c=1
c=17
x *C=22 y
Figure 12.5 The graph of f(x, y) = x% + 2 Figure 12.6 Level curves (contours) representing
and some level curves of f elevation in a topographic map

The contour curves in the topographic map in Figure 12.6 show the elevations, in
100 m increments above sea level, on part of Nelson Island on the British Columbia
coast. Since these contours are drawn for equally spaced values of C, the spacing of
the contours themselves conveys information about the relative steepness at various
places on the mountains; the land is steepest where the contour lines are closest
together. Observe also that the streams shown cross the contours at right angles.
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Figure 12.7
x oy
a) 1 ¢ f 3 (1 - = - =
(a) Level curves o 5 1

(b) Level curves of /9 — x2 — y2

They take the route of steepest descent. Isotherms (curves of constant temperature)
and isobars (curves of constant pressure) on weather maps are also examples of
level curves.

)of

Bl

X
m The level curves of the function f(x,y) = 3 (1 -3

Example 1 are the segments of the straight lines

Xy C
—_ — —_-— ] = — —:1——’
3(1 ) C or 2+ 3

0<C <3,
1 0=C<3)

which lie in the first quadrant. Several such level curves are shown in Figure 12.7(a).
They correspond to equally spaced values of C, and their equal spacing indicates
the uniform steepness of the graph of f in Figure 12.2.

n
y
level curves
X Y
4 fan=3{1- - — < )=C
2 4
Cc=2.25
3 c=25
C=2.75
2
X
C=15
i c=3
Cc=2
Cc=25
level curves
) 1 2 x
) =% Flrm=y/0-aT=y2=C

(a) (b)

PN X8 The level curves of the function f(x, y) = /9 — x2 — y2 of Ex-

ample 2 are the concentric circles

VI—x2—y2=C or

Observe the spacing of these circles in Figure 12.7(b); they are plotted for several
equally spaced values of C. The bunching of the circles as C — 04 indicates the
steepness of the hemispherical surface that is the graph of f. (See Figure 12.3.)

2+y2=9-C2 0 < C <3).

A function determines its level curves with any given spacing between consecutive
values of C. However, level curves only determine the function if all of them are
known.

The level curves of the function f(x, y) = x? — y? are the curves
x%> — y? = C. For C = 0 the level “curve” is the pair of straight lines x = y and
x = —y. For other values of C the level curves are rectangular hyperbolas with
these lines as asymptotes. (See Figure 12.8(a).) The graph of f is the saddle-like
hyperbolic paraboloid in Figure 12.8(b).




F X
C=1
Figure 12.8 1 emo \
2

(a) Level curves of x2 ~ y
(b) The graph of x2 — y?

Figure 12.9

(a) Level curves of z = g(x, y) for
Example 6

(b) The graph of z = g(x., v)
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c=-1

C=4

[~

(a) (b)

3TN Describe and sketch some level curves of the function z = g(x, y)
defined by z > 0, x> 4 (y — z)? = 2z%. Also sketch the graph of g.

Solution The level curve z = g(x, y) = C (where C is a positive constant) has
equation x> + (y — C )2 = 2C? and is, therefore, a circle of radius +/2C centred
at (0, C). Level curves for C in increments of 0.1 from O to 1 are shown in
Figure 12.9(a). These level curves intersect rays from the origin at equal spacing
(the spacing is different for different rays) indicating that the surface z = g(x, y) is
an oblique circular cone. See Figure 12.9(b).

-

(b)

Although the graph of a function f(x, y, z) of three variables cannot easily be
drawn (it is a three-dimensional hypersurface in 4-space), such a function has
level surfaces in 3-space that can, perhaps, be drawn. These level surfaces have
equations f(x, y, z) = C for various choices of the constant C. For instance, the
level surfaces of the function f(x,y,z) = x>+ y* + z* are concentric spheres
centred at the origin. Figure 12.10 shows a few level surfaces of the function
f(x,y,z) = x* — z. They are parabolic cylinders.
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Figure 12.10

flx,yv.0)=x

2

Level surfaces of
-z

Using Maple Graphics

Like many mathematical software packages, Maple has several plotting routines
to help you visualize the behaviour of functions of two and three variables. We
mention only a few of them here; there are many more. Most of the plotting routines
are in the plots package, so you should begin any Maple session where you want to
use them with the input

> with(plots):

To save space, we won’t show any of the plot output here. You will need to play
with modifications to the various plot commands to obtain the kind of output you
desire.

The graph of a function f(x, y) of two variables (or an expression in x and y)
can be plotted over a rectangle in the x y-plane with a call to the plot3d routine. For
example,

> f 1= —6*y/{(2+x724y72);
> plot3d(f, x=-6..6, y=-6..6);

will plot a surface similar to the one in Figure 12.4 but without axes and viewed
from a steeper angle. You can add many kinds of options to the command to change
the output. For instance,

> plot3d(f, x=-6..6, y=-6..6, axes=boxed,
orientation=[30,701);

will plot the same surface within a 3-dimensional rectangular box with scales on
three of its edges indicating the coordinate values. (If we had said axes=normal
instead, we would have got the usual coordinate axes through the origin, but they
tend to be harder to see against the background of the surface, so axes=boxed
is usually preferable. The option orientation=[30,70] results in the plot’s
being viewed from the direction making angle 70° with the z-axis and lying in a
plane containing the z-axis making an angle 30° with the xz-plane. (The default
value of the orientation is [45, 45] if the option is not specified.) By default,
the surface plotted by plot3d is ruled by two families of curves, representing its
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intersection with vertical planes x = @ and y = b for several equally spaced values
of a and b, and it is coloured opaquely so that hidden parts do not show.

Instead of plot3d, you can use contourplot3d to get a plot of the surface ruled
by contours on which the value of the function is constant. If you don’t get enough
contours by default, you can include a contours=n option to specify the number
you want.

> contourplot3d(f, x=-6..6, y=-6..6, axes=boxed,
contours=24) ;

The contours are the projections of the level curves onto the graph of the surface.

Alternatively, you can get a two-dimensional plot of the level curves themselves

using contourplot

> contourplot(f, x=-6..6, y=-6..6, axes=normal,
contours=24) ;

Other options you may want to include with plot3d or contourplot3d are:

(a) view=zmin. .zmax to specify the range of values of the function (i.e., ) to
show in the plot.

(b) grid=[m,n] to specify the number of x and y values at which to evaluate
the function. If your plot doesn’t look smooth enough, try m = n = 20 or 30
or even higher values.

The graph of an equation, f(x, y) = 0, in the xy-plane can be generated without

solving the equation for x or y first, by using implicitplot.

> implicitplot(x"3-y"2-5*x*y-x-5, X=-6..7, y=-5..6);

will produce the graph of x* — y2 —5xy — x — 5 = 0 on the rectangle —6 < x < 7,

—5 < y < 6. There is also an implicitplot3d routine to plot the surface in 3-space

having an equation of the form f(x,y,z) = 0. For this routine you must specify

ranges for all three variables;

> implicitplot3d(x™2+y"2-2"2-1, x=-4..4, y=-4..4,
z=-3..3, axes=boxed);

plots the hyperboloid 7> = x> 4 y% — 1.

Finally, we observe that Maple is no more capable than we are of drawing graphs
of functions of three or more variables, since it doesn’t have four-dimensional plot
capability. The best we can do is plot a set of level surfaces for such a function:

> dmplicitplot3d{({z-x"2-2,2z-x"2,2-x"2+2},x=-2..2,
y=-2..2, z=-2..5, axes=boxed) ;
It is possible to construct a sequence of plot structures and assign them to, say, the

elements of a list variable, without actually plotting them. Then all the plots can be
plotted simultaneously using the display function.

> for ¢ from -1 to 1 do
plc] := implicitpleot3d(z"2-x"2-y"2-2*c, x=-3..3,
y=-3..3, z=0..2,
color=COLOR(RGB, (1+c) /2, (1-¢)/2,1)) od:

> display({seg(plc]l,c=-1..1)], axes=boxed,
orientation=[(30,401);

Note that the command creating the plots is terminated with a colon “:” rather than

the usual semicolon. If you don’t suppress the output in this way, you will get
vast amounts of meaningless numerical output as the plots are constructed. The
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cnlnr=

Specify the domains of the functions in Exercises 1-10.

Lofoy =2t 2 f,0) = V5
3 [y = 4 fxy) =
'./(~\-))—m . x*y—xz_yz

5. flx.y) =+/4x2 4+ 9y2 - 36

6. f(x,y)= 7. f(x,y) =1n(1 +xy)

PR

8. fle.y)= sin~!(x + ¥)

. N xyz
9. flx,y.2) = m
e)i_\':
10. f(x,y.z) =
JXyz
Sketch the graphs of the functions in Exercises 11-18.
11. f(x,y) =x, O0D=<x<2 0=<y=<3)
12. f(x,y) =sinx, O<x<2m, O0<y<]
13, fle.ny =y  (-1<x=<l, -1<y=<l

4 [y =4—x2—y, P4y’ <4, x>0, y>0)

15. f(x,y) = m

17. f(x, y) = |x| + |y

16. f(x,y)=4— x>

18. f(x,y)=6—x—2y
Sketch some of the level curves of the functions in Exercises
19-26.

19, fix,)=x—y 20. f(x,y)= x2 —i—2y2

2

21, f(x, vy =uxy 22, f(x,y) = x7

. X—-y Y
23, fix, ) = 24. L y) = ———
o =13 fen = 5

26. f(x,y) = /l —x?
y

Exercises 27-28 refer to Figure 12.11, which shows contours of
a hilly region with heights given in metres.

25, f(x.y)=xe?

27. At which of the points A and B is the landscape steeper?
How do you know?

28. Describe the topography of the region near point C.

_ antion is an attempt to eive the three plots a different colour so they

200

\_/,1—0(%
Figure 12.11
(@) y (b) v
?c=1o
X X
=5 cs’ feoo

©

c=0

Figure 12.12

Describe the graphs of the functions f(x, y) for which families
of level curves f(x, y) = C are shown in the figures referred to
in Exercises 29-32. Assume that each family corresponds to
equally spaced values of C and that the behaviour of the family
is representative of all such families for the function.

29. See Figure 12.12(a). 30. See Figure 12.12(b).

31. See Figure 12.12(c). 32. See Figure 12.12(d).

33. Are the curves y = (x — C)? level curves of a function
f(x, y)? What property must a family of curves in a region
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2,2
of the x y-plane have to be the family of level curves of a 39. f(x,v,2) = 1%+ 32 40. f(x,y.2) = X4y
function defined in the region? e . 22

34. If we assume z > 0, the equation 4z> = (x — 2)2 + (y — )2 41 f(x,y,2) = x| + Iy + Izl
defines z as a function of x and y. Sketch some level curves 42. Describe the “level hypersurfaces™ of the function
of this function. Describe its graph.

35. Find f(x, y) if each level curve f(x, y) = C is a circle Fey. ) =x>+y>+ 22 +%
centred at the origin and having radius
@C ®»C* (©vJC (@hC.

36. Find f(x, y, 2) if for each constant C the level surface Use Maple or other computer graphing software to plot the
f(x,y,2) = C is a plane having intercepts C*, 2C?, and graphs and the level curves of the functions in Exercises 43-48.
3C3 on the x-axis, the y-axis, and the z-axis, respectively. 1 cos x

Describe the level surfaces of the functions specified in Exercises 43— “4 —

T+x*+y I+y
37-41.
y x
37. =x2 4324 45, ———— 4. ———
7 -f(x’va) Ey Atz T+x2 42 G212t
38. fx,y,2)=x+2y+3z |
47. xy 48. o

Before reading this section you should review the concepts of neighbourhood, open
and closed sets, and boundary and interior points introduced in Section 10.1.

The concept of the limit of a function of several variables is similar to that for
functions of one variable. For clarity we present the definition for functions of two
variables only; the general case is similar.

We might say that f(x, y) approachesthe limit L as the point (x, y) approaches

the point (a, b), and write
lim x,y)=1L,

(x,y)—>(a,b) Fee. )
if all points of a neighbourhood of (a, b), except possibly the point (a, ) itself,
belong to the domain of f, andif f(x, y) approaches L as (x, y) approaches (a, b).
However, it is more convenient to define the limit in such a way that (a, ) can be a
boundary point of the domain of f. Thus, our formal definition will generalize the
one-dimensional notion of one-sided limit as well.

Definition of Limit

We say that( %mz » f(x,y) = L, provided that
xX,y)—{a,

(i) every neighbourhood of (a, b) contains points of the domain of f different
from (a, b), and
(ii) for every positive number € there exists a positive number § = §(¢) such

that | f(x, y) — L| < € holds whenever (x, y) is in the domain of f and
satisfies 0 < /(x —a)2 + (y — b)2 < 4.

Condition (i) is included in Definition 2 because it is not appropriate to consider
limits at isolated points of the domain of f, that is, points with neighbourhoods that
contain no other points of the domain.
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If a limit exists it is unique. For a single-variable function f, the existence of
lim,_,, f(x) implies that f(x) approaches the same finite number as x approaches
a from either the right or the left. Similarly, for a function of two variables,
lim(y,y)—aby f(x,y) = L exists only if f(x,y) approaches the same number L
no matter how (x, y) approaches (a, b) in the domain of f. In particular, (x, y)
can approach (a, b) along any curve that lies in D(f). It is not necessary that
L = f(a,b) even if f(a,b) is defined. The examples below illustrate these
assertions.

All the usual laws of limits extend to functions of several variables in the obvious
way. For example, if lim vy f(x, ¥) = L, limg yys@p g, y) = M, and
every neighbourhood of (a, b) contains points in D(f) N D(g) other than (a, b),
then

li Ve, ) =L+M,
(x,y)‘_%,b)(f(x y) £ g(x,y)
lm , ,y)=1LM,
L (axb)f(x y)&(x,y)
S, y). L

gx,y) M’

im rovided M # 0.
(x,y}->(a,b) b 7

Also, if F(t) is continuous at ¢t = L, then

lim = F(f(x,») = F(L).

(x,y)->4{a,b)

(a) 2x—yl=4-9=-5,

(b)

lim
(x,y)—~>(2,3)

lim  x%y = d%b,
(x,y)—~>(a,b)

. . [x Z1
(©) ( )hm ; 2)y sin (—) = 2sin (g) = 1.
x.y)—>(7/3, y ™

The function f(x,y) = /1 —x2 — y? is continuous at all points
of its domain, the closed disk x? + y? < 1. Of course, (x, y) can approach points
of the bounding circle x? + y? = 1 only from within the disk.

u

The following examples show that the requirement that f (x, y) approach the same
limit no matter how (x, y) approaches (a, b) can be very restrictive, and makes
limits in two or more variables much more subtle than in the single-variable case.

2xy
x2 +y?

m Investigate the limiting behaviour of f(x, y) =
approaches (0, 0).

as (x, y)

Solution Note that f(x, y) is defined at all points of the xy-plane except the
origin (0, 0). We can still ask whether lim, y)—. 0.0y f (x, ¥) exists or not. If we
let (x, y) approach (0, 0) along the x-axis (y = 0), then f(x,y) = f(x,0) = 0
(because f(x, 0) = Oidentically). Thus, lim,, ,,—@©,0) f(x, ¥) must be O if it exists
at all. Similarly, at all points of the y-axis we have f(x, y) = f(0, y) = 0.




Figure 12.13

(a) f(x,y) has different limits as
(x, y) — (0, 0) along different
straight lines

(b) f(x, y) has the same limit 0 as
(x, y) — (0, 0) along any straight
line but has limit 1 as
(x,y) — (0,0) along y = x*
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However, at points of the line x = y, f has a different constant value; f(x,x) = 1.
Since the limit of f(x, y) is I as (x, y) approaches (0, 0) along this line, it follows
that f (x, y) cannot have a unique limit at the origin. That is,

2xy .
im — does not exist.

=00 x2 + y?2
Observe that f(x, y) has a constant value on any ray from the origin (on the ray
y = kx the value is 2k/(1 + k%)), but these values differ on different rays. The
level curves of f are the rays from the origin (with the origin itself removed). It is
difficult to sketch the graph of f near the origin. The first-octant part of the graph
is the “hood-shaped” surface in Figure 12.13(a).

(a) (b)

2
(STl Investigate the limiting behaviour of f(x, y) = 4):_)) 5 as (x,y)
xt+y°
approaches (0, 0).

Solution As in Example 3, f(x, y) vanishes identically on the coordinate axes,
so lim yy—(0,0) f(x, y) must be O if it exists at all. If we examine f(x, y) at points
of the ray y = kx, we obtain

2kx? 2kx

Fx,dex) = Y1k g2 + k2

— 0, as x -0 (k#0).

Thus, f(x,y) = 0as (x,y) — (0,0) along any straight line through the origin.
We might be tempted to conclude, therefore, that lim(, y)— 0,0y f(x,y) = 0, but
this is incorrect. Observe the behaviour of f(x, y) along the curve y = x?:

4
Faah = X .

x4 + .X4
Thus, f(x, y) does not approach 0 as (x, y) approaches the origin along this curve,
so limy ) 0.0) f (%, ) does not exist. The level curves of f are pairs of parabolas

of the form y = kx?, y = x?/k with the origin removed. See Figure 12.13(b) for
the first octant part of the graph of f.

_m
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Figure 12.14

lim -
(x, )= (0.0) ¥

xzy
2 +y2

=0

09,55 s eean
SR
é@%‘%&‘“‘?\
%@f’ S

s

m Show that the function f(x, y) = % does have a limit at the
xX“4+y
origin; specifically,

x2y

lim ——
(x)—(0,0) x2 + y2

Solution This function is also defined everywhere except at the origin. Observe
that since x? < x? 4 y?, we have

< |y| < Vx?+y?%,

x%y

If(x,y) =0l = 21y

which approaches zero as (x, y) — (0, 0). (See Figure 12.14.) Formally, if ¢ > O
is given and we take § = ¢, then | f(x, y) — 0| < € whenever 0 < /x2 + yZ < §,
so f(x, y) has limit 0 as (x, y) — (0, 0) by Definition 2.

As for functions of one variable, continuity of a function f at a point of its domain
is defined directly in terms of the limit.

The function f(x, y) is continuous at the point (a, b) if

fx,y) = f(a,b).

(x, y)%( \b)

It remains true that sums, differences, products, quotients, and compositions of
continuous functions are continuous. The functions of Examples 3 and 4 above
are continuous wherever they are defined, that is, at all points except the origin.
There is no way to define f (0, 0) so that these functions become continuous at the
origin. They show that the continuity of the single-variable functions f(x, b) at
x =aand f(a,y)aty = b does not imply that f(x, y) is continuous at (a, b). In
fact, even if f(x, y) is continuous along every straight line through (a, b), it still
need not be continuous at (a, b). (See Exercises 16—-17 below.) Note, however,
that the function f(x,y) of Example 5, although not defined at the origin, has
a continuous extension to that point. If we extend the domain of f by defining
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£(0,0) =limg vy 0,0 f(x, y) = 0, then f is continuous on the whole xy-plane.

As for functions of one variable, the existence of a limit of a function at a point
does not imply that the function is continuous at that point. The function

ron={9

if (x, y) # (0,0)
if (x, y) = (0, 0)

satisfies lim 1y 0,0) f(x,y) = 0, which is not equal to f(0,0), so f is not
continuous at (0, 0). Of course, we can make f continuous at (0, 0) by redefining
its value at that point to be 0.

| Exercises 12.2

In Exercises 1-12, evaluate the indicated limit or explain why it
does not exist.

1.

3.

14.

15.

lim xy + x? 2. lim  +/x%+y?
(x.y)—~>(2,—1) (x.¥)—>(0,0)
2 2
+y .
lim o2 4. lm =T
(x.y)—(0.0) y (x,»)~>(0.0) x= + y
cosy) o - 1)?
T ey I —x —cosy T =00 x2 4 (y = 1)2
’% .
v sSin(x —
lim 8. lim Snte=y)
()= (0.0) X% +y (x.y)=0,0) cos(x + y)
sin 2x2 — x
) 10. lim — %
(v )= 0.0) x2 4 y2 (x,3)—(1,2) 4x2 — y2
x2y? x2y?

12.

im _ lim P E——
() —>(0.0) x2 + y4 (x,3)—(0.0) 2x* + y4

. How can the function

x2 +y2 _x3y3

foy)y=—273 e

; (x, y) # (0,0,
be defined at the origin so that it becomes continuous at all
points of the xy-plane?

How can the function

343
X =y

S,y =

, (x #y),

be defined along the line x = y so that the resulting function
is continuous on the whole xy-plane?

What is the domain of

X—'y?
2_y2

Sx,y)=

X

Does f(x, y) have a limit as (x, ¥) — (1, 1)? Can the
domain of f be extended so that the resulting function is
continuous at (1, 1)? Can the domain be extended so that
the resulting function is continuous everywhere in the
xy-plane?

% 16.

= 17.

«18.

* 19,

* 20.

21.

Given a function f(x, y) and a point (a, b) in its domain,
define single-variable functions g and 4 as follows:

g(x) = f(x,b), h(y) = f(a, y).

If g is continuous at x = a and % is continuous at y = b,
does it follow that f is continuous at (a, b)? Conversely,
does the continuity of f at (@, b) guarantee the continuity of
g at a and the continuity of A at b7 Justify your answers.

Let u = ui + vj be a unit vector, and let

Su@®) = fla+tu,b+1v)

be the single-variable function obtained by restricting the
domain of f(x, y) to points of the straight line through

(a, b) parallel to u. If f,(¢) is continuous at t = 0 for every
unit vector u, does it follow that f is continuous at (a, b)?
Conversely, does the continuity of f at (a, b) guarantee the
continuity of f,(¢) at r = 0? Justify your answers.

What condition must the nonnegative integers m, n, and p
satisfy to guarantee that lim, y)— 0,0y x™ "/ x2 +y2)P
exists? Prove your answer.
What condition must the constants a, b, and ¢ satisfy to
guarantee that limx, y)— 0.0y xy/(ax? + bxy + cy?) exists?
Prove your answer.

sin x sin? y
1 —cos(x2 + y2)
(0, 0) in such a way that it becomes continuous there? If so,
how?

Can the function f(x, y) = be defined at

Use 2- and 3-dimensional mathematical graphing software
to examine the graph and level curves of the function

f(x, y) of Example 3 on the region —1 < x < 1,

-1 <y =<1 (x,y) # (0,0). How would you describe the
behaviour of the graph near (x, y) = (0, 0)?
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22. Use 2- and 3-dimensional mathematical graphing software 23. The graph of a single-variable function f(x) that is
to examine the graph and level curves of the function continuous on an interval is a curve that has no breaks in it
Jf(x, y)y of Example 4 on the region —1 < x <1, there and that intersects any vertical line through a point in
—t < v <1, (x,y) # (0,0). How would you describe the the interval exactly once. What analogous statement can you
behaviour of the graph near (x, y) = (0, 0)? make about the graph of a bivariate function f(x, y) thatis

continuous on a region of the xy-plane?

In this section we begin the process of extending the concepts and techniques of
single-variable calculus to functions of more than one variable. It is convenient to
begin by considering the rate of change of such functions with respect to one variable
at a time. Thus, a function of n variables has n first-order partial derivatives, one
with respect to each of its independent variables. For a function of two variables,
we make this precise in the following definition:

The first partial derivatives of the function f(x, y) with respect to the
variables x and y are the functions fi(x, y) and f»(x, y) given by

fGx+hy)y— fx,y)
h k]
fx,y+k)— f(x,y)
. ,

Jilx,y) = ;1_13})

falx,y) = ]}15(1)

provided these limits exist.

Each of the two partial derivatives is the limit of a Newton quotient in one of
the variables. Observe that f(x, y) is just the ordinary first derivative of f(x, y)
considered as a function of x only, regarding y as a constant parameter. Similarly,
f>(x, ) is the first derivative of f(x, y) considered as a function of y alone, with
x held fixed.

If f(x,y) =x2siny, then
filx,y) =2xsiny and folx,y) =x%cos y.

The subscripts “1”” and “2” in the notations for the partial derivatives refer to the
“first” and “second” variables of f. For functions of one variable we use the
notation f’ for the derivative; the prime (') denotes differentiation with respect to
the only variable on which f depends. For functions f of two variables we use
f1 or f> to show the variable of differentiation. Do not confuse these subscripts
with subscripts used for other purposes, for example, to denote the components of
vectors.

The partial derivative fi(a, b) measures the rate of change of f(x,y) with
respect to x at x = g while y is held fixed at b. In graphical terms, the surface
z = f(x,y) intersects the vertical plane y = b in a curve. If we take horizontal
and vertical lines through the point (0, b, 0) as coordinate axes in the plane y = b,
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then the curve has equation z = f(x, b), and its slope at x = a is fi(a, b). (See
Figure 12.15.) Similarly, f>(a, b) represents the rate of change of f with respect
to y at y = b with x held fixed at a. The surface z = f(x, y) intersects the
vertical plane x = a in acurve z = f(a, y) whose slope at y = b is f>(a, b). (See
Figure 12.16.)

Various notations can be used to denote the partial derivatives of z = f(x, y)
considered as functions of x and y:

Notations for first partial derivatives

0z d

5_ = —f(x»}’) = fl(x7y) = le(xJ’)
X ox

a 9

== f ) = Hlxy) = Daf(,y)
y dy f

The symbol “3/dx” should be read as “partial with respect to x” so “dz/dx” is
“partial z with respect to x.” The reason for distinguishing “9” from the “d” of
ordinary derivatives of single-variable functions will be made clear later.

plane y = b

plane x = a

(a.b. fla.b))

z= f(x,y) = f(x,y)

Figure 12.15 fi(a, b) is the slope of the curve of Figure 12.16  f2(a, b) is the slope of the curve of
intersection of z = f(x, y) and the vertical plane y = b at intersection of z = f(x, y) and the vertical plane x = a at
XxX=a y=»b

Values of partial derivatives at a particular point (a, b) are denoted similarly:

Values of partial derivatives

o (af(x )) fila.b) = Dy f(a, b)
PRORIES ] i, y = y = a,
0%l \Ox % @b) 1 :

L ~—(—8—f(x )) = fa(a,b) = Daf(a, )
dy @b B dy i (a.b) IRR IR ’

Some authors prefer to use f, or 9f/dx and f, or df/dy instead of f) and f>.
However, this can lead to problems of ambiguity when compositions of functions
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arise. For instance, suppose f(x, y) = x%y. By f1(x?, xy) we clearly mean

a
<a—xf(-xv y))

But does f; (x2, xy) mean the same thing? One could argue that f, (x2, xy) should
mean

d 0 0

In order to avoid such ambiguities we usually prefer to use f; and f; instead of f,
and f,. (However, in some situations where no confusion is likely to occur we may
still use the notations f, and f,, and also df/0x and df/dy.)

All the standard differentiation rules for sums, products, reciprocals, and quo-
tients continue to apply to partial derivatives.

= Q)(xH)(xy) = 2x7y.
(x2,xy)

= 2xy
(x2,xy)

Find 8z/0x and z/9y if z = x3y2 + x*y + y*.

Solution 8z/dx =3x%y*+4x3y and 8z/3y =2x3y +x* +4y°.

|
IENNEEN Find £1(0, 7) if f(x,y) = e cos(x + ¥).
Solution
filx, y) = ye™cos(x +y) — e sin(x + y),
£100, 1) = m e cos(w) — ¥ sin(r) = —7.
||

The single-variable version of the Chain Rule also continues to apply to, say,
f (g (x, y)), where f is a function of only one variable having derivative f':

3 9
af(g(x, ¥)) = (g, »)) g1(x, ), 5;f(g(x, ) = (g, y) ga2(x, ).

We will develop versions of the Chain Rule for more complicated compositions of
multivariate functions in Section 12.5.

131 AN If £ is an everywhere differentiable function of one variable, show
that z = f(x/y) satisfies the partial differential equation

9z n 9z 0
X — — =0.
ox yay

Solution By the (single-variable) Chain Rule,

9z L x 1 dz L (x —x
a=f(;)<;) and a—f@(?)-

Hence,

xaz+ 9z 7 x >(14_ —Xx 0
— — = — — x — | =0.
ax 7 By AR
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Definition 4 can be extended in the obvious way to cover functions of more than
two variables. If f is a function of n variables xq, xa, ..., x,, then f has n first
partial derivatives, fi(xi,x2,...,Xn), fo(x1, X2, .0 Xn)y ooy fu(X1, X2, .00, Xn),
one with respect to each variable.

0 2xy 2xy
™ = - 3 (X + ).
9z \1+xz+yz (14+xz+yz)

Again, all the standard differentiation rules are applied to calculate partial deriva-
tives.

__u

Remark If a single-variable function f(x) has a derivative f’(a) at x = a, then
f is necessarily continuous at x = a. This property does not extend to partial
derivatives. Even if all the first partial derivatives of a function of several variables
exist at a point, the function may still fail to be continuous at that point. See Exercise
36 below.

Tangent Planes and Normal Lines

If the graph z = f(x, y) is a “smooth” surface near the point P with coordinates
(a, b, f(a, b)), then that graph will have a tangent plane and a normal line at
P. The normal line is the line through P that is perpendicular to the surface; for
instance, a line joining a point on a sphere to the centre of the sphere is normal to
the sphere. Any nonzero vector that is parallel to the normal line at P is called a
normal vector to the surface at P. The tangent plane to the surface z = f(x, y) at
P is the plane through P that is perpendicular to the normal line at P.

Let us assume that the surface z = f(x, y) has a nonvertical tangent plane (and
therefore a nonhorizontal normal line) at point P. (Later in this chapter we will
state precise conditions that guarantee that the graph of a function has a nonvertical
tangent plane at a point.) The tangent plane intersects the vertical plane y = b
in a straight line that is tangent at P to the curve of intersection of the surface
z = f(x,y) and the plane y = b. (See Figures 12.15 and 12.17.) This line has
slope fi(a, b), so it is parallel to the vector T, = i + fi(a, b)k. Similarly, the
tangent plane intersects the vertical plane x = a in a straight line having slope
f>(a, b). This line is therefore parallel to the vector T> = j+ f>(a, b)k. It follows
that the tangent plane, and therefore the surface z = f(x, y) itself, has normal
vector

ij k
n=T,xT: =0 | f(a,b)|= fila, bli+ fr(a,b)j—k.
1 0 fi(a,b)

A normal vector to z = f(x, y) at (a, b, f(a, b)) is
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planey = b

plane x =a

tangent plane

Figure 12.17 The tangent plane and
anormal vectorto z = f(x, y) at x
P = (a.b. fla, b))

Since the tangent plane passes through P = (a, b, f(a, b)), it has equation
fila,b)(x —a) + fla,b)(y —b) — (z — f(a, b)) =0,
or, equivalently,

An equation of the tangent plane to z = f(x, y)at (a, b, f(a, b)) is
z= fla,b) + fila,b)(x —a) + fr(a, b)(y — b).

We shall obtain this result by a different method in Section 12.7.
Thenormallinetoz = f(x, y)at(a, b, f(a, b)) hasdirection vector fi(a, b)i+

f2(a, b)j — k and so has equations
x—a y-b z—f(ab)
fita,b)  faa,b) -1

with suitable modifications if either fi(a, ) =0 or fi(a,b) = 0.

3 ETLIEN  Find a normal vector and equations of the tangent plane and normal
line to the graph z = sin(xy) at the point where x = 7/3 and y = —1.

Solution The point on the graph has coordinates (r/3, —1, —+/3/2). Now

a
% y cos(xy) and o _ x cos(xy).
ax ay

At (m/3, —1) we have 9z/0x = —1/2 and 9z/0y = 7 /6. Therefore, the surface
has normal vector n = —(1/2)i+ (;r/6)j — k and tangent plane

z=_—3—l<x—%)+%(y+l),

or, more simply, 3x —wy + 67 = 2w — 34/3. The normal line has equation




(a) If Q is the pointon z = X — y?

closest to P, then P Q is normal

(b) Equation —f =

only one real root, t = —1

SECTION 12.3: Partial Derivatives 723

o X2 _6y+6 62433

-3 b 6

m What horizontal plane is tangent to the surface
z=x>—4xy —2y> + 12x — 12y — 1,
and what is the point of tangency?

Solution A plane is horizontal only if its equation is of the form z = £, that is,
it is independent of x and y. Therefore, we must have dz/dx = dz/dy = 0 at the
point of tangency. The equations

9
B ey —dy+12=0
ox
0
P a4y —12=0
dy
have solution x = —4, y = 1. For these values we have z = —31, so the required

tangent plane has equation z = —31 and the point of tangency is (—4, 1, —31).

Distance from a Point to a Surface: A Geometric Example

TR Find the distance from the point (3, 0, 0) to the hyperbolic paraboloid
with equation z = x2 — y2.

Solution This is an optimization problem of a sort we will deal with in a more
systematic way in the next chapter. However, such problems involving minimizing
distances from points to surfaces can frequently be solved using geometric methods.

9
—— has
(1 =212
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If 0 = (X, Y, Z) is the point on the surface z = x% — y? that is closest to

P = (3,0, 0), then the vector P_Q> = (X — 3)i+ Yj + Zk must be normal to the
surface at Q. (See Figure 12.18(a).) Using the partial derivatives of z = x2 =2,

—
we know that the vectorn = 2Xi—2Yj—k is normal to the surface at 0. Thus, P ¢

must be parallel to n, and @ = tn for some scalar t. Separated into components,
this vector equation states that

X -3 =2Xt, Y = =2Yy, and Z = —t.

The middle equation implies that either Y = Qort = —%. We must consider both
of these possibilities.

CASEI IfY =0, then

and Z = —t.

But Z = X2 — Y2, so we must have

9
T (1 =207

This is a cubic equation in ¢, so we might expect to have to solve it numerically,
for instance, by using Newton’s Method. However, if we try small integer values
of ¢, we will quickly discover that ¢ = —1 is a solution. The graphs of both sides of
the equation are shown in Figure 12.18(b). They show that # = —1 is the only real
solution. Calculating the corresponding values of X and Z, we obtain (1,0, 1) as a
candidate for Q. The distance from this point to P is V5.
CASEIl Ifr = —1/2,then X =3/2,Z =1/2,and ¥ = /X% — Z = +/7/2,
and the distance from these points to P is +/17/2.

Since 7 < 5, the points (3/2, £+/7/2,1/2) are the points on z = x? — y?
closest to (3, 0, 0), and the distance from (3, 0, 0) to the surface is V17 /2 units.

_m
|Exercises 12.3
. - 2
In Exercises 1-10, find all the first partial derivatives of the R )
function specified and evaluate them at the given point. 10 glx1, 2. x3, x4) = x3+x2 @.1.-1.-2)
1. fle,y=x—-y+2, (3,2) In Exercises 11-12, calculate the first partial derivatives of the
2. fle,y)=xy+x%,  (2,0) given functions at (0, 0). You will have to use Definition 4.
. 3 3
3. fle v =x%%5, (0,-1,-1) oy
4 xz . f& ) =1753y2 if (x, y) # (0,0)
- gLy ) = g (1.1, D 0, if (x, y) = (0, 0).
2 2
a1 (Y _ x- =2y .
5. z =tan (x)’ (=1 12. f(x’y)zi_x———T’ ifx #£y
6. w=In(l+e%%), (2,0,—1) 0, ifx =y.

7 ¢ L T oy In Exercises 13-22, find equations of the tangent plane and
- ey =sine/y), (E’ ) normal line to the graph of the given function at the point with

1 specified values of x and y.
NI

8. flx.v)=
flx ) 13. f(x,y)=x>—vy¥at(=2,1)
9. w=xVMI " (¢,2¢)

(3,4




xX—y
14. f(x,y) = — at (1, 1)
X4y

15. f(x,y) =cos(x/y)at (w,4)
16. f(x,y)=¢€" at(2,0)

X
17. f(x,y) = ——at(1,2
) = a2

18. f(x,y)= yef"'2 at (0, 1)
19. f(x,y) =In(x? +yHat (1, —2)

20. fon = -2 20.2)
. f(x,y) = at (0,
ST

21, f(x,y) =tan"'(y/x)at (1, —1)

22, f(x,y)y=+1 +x3y2 at (2, 1)

23. Find the coordinates of all points on the surface with
equation z = x* — 4xy? 4 6y% — 2 where the surface has a
horizontal tangent plane.

24. Find all horizontal planes that are tangent to the surface with
equation z = xye‘(xz‘”'z)/z. At what points are they
tangent?

In Exercises 25-31, show that the given function satisfies the

given partial differential equation.

, dz 0
@25 =xe’, x‘—:_z
dx  dy
dz 9z
®26.:=x+y, x,—z y—Z=0
x—y ox ay
B a
027 c=/x2 2 L4y E
d dy
b ow ad
< 28. ux:xz—l—yz, xl—l—y——}—z—w=2w
dx dy 0z
©29 1 8w+ 3w+ Jw 5
W= X — — — = 2w
x2 4+ y2 472 dx yi)y “ oz

©30. = f (x2 + yz), where f is any differentiable function of
one variable,
az 0z
— —x— =0
Y ax o ay
¢ 31 7 = f(x* — y?), where [ is any differentiable function of
one variable,
dz 0z _

— — =0
yax e ay

32.

33.

* 34,

* 35,

* 36.

37.

38.

%39,

* 40,
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Give a formal definition of the three first partial derivatives
of the function f(x, y, z).

What is an equation of the “tangent hyperplane” to the graph
w= f(x,y,2)at (a, b,c, fla,b, c))?

Find the distance from the point (1, 1, 0) to the circular
paraboloid with equation 7 = x? 4 y2.

Find the distance from the point (0, 0, 1) to the elliptic
paraboloid having equation 7 = x4 2y2.

2xy .

Let f(x,y) = { x2 +y2’ if (x, y) #(0,0)

0, if (x, y) = (0, 0).
Note that f is not continuous at (0,0). (See Example 3 of
Section 12.2.) Therefore its graph is not smooth there.
Show, however, that f(0, 0) and f>(0, 0) both exist. Hence,
the existence of partial derivatives does not imply that a
function of several variables is continuous. This is in
contrast to the single-variable case.

Determine f1(0, 0) and f2(0, 0) if they exist, where

1
f(x,y)=l(x3+y)smmv if (x,y) # (0,0)
0. if (x, y) = (0, 0).

Calculate f;(x, y) for the function in Exercise 37. Is
f1(x, y) continuous at (0, 0)?

I B
Let f(x,y) = { xz—+§2 if @ y) # ©0.9)

0, if (x, y) = (0, 0).
Calculate f1(x, y) and f>(x, y) at all points (x, y) in the
plane. Is f continuous at (0, 0)? Are f and f; continuous
at (0, 0)?

xy?z .
Let f(x,.2) = { Ayt Ty #0.0.0
0, if (x, y,2) = (0,0, 0).

Find £1(0,0,0), f2(0,0,0), and f3(0,0,0). Is f continuous
at (0,0,0)? Are f1. f2, and f3 continuous at (0, 0, 0)?
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Partial derivatives of second and higher orders are calculated by taking partial

9z A
—3—;—2— = -a—J; 'é—x— = f“(x, y) - fxx(x, Y),
a2z 9.9z
3y = 5}‘ 3y = falx, y) = fy(x, y),

and two mixed second partial derivatives with respect to x and y,

3%z 3 oz
aaay  anay | AED=h),
3z 48z
5;8—x- ] 5; g*x‘ — f12(xsy) = fx)’(x’y)‘

Again, we remark that the notations fi1, fi2, f21, and f» are usually preferable
t0 frr, fry» fyx, and f,,, although the latter are often used in partial differential
equations. Note that fi, indicates differentiation of f first with respect to its first
variable and then with respect to its second variable; f>; indicates the opposite order
of differentiation. The subscript closest to f indicates which differentiation occurs
first.

Similarly, if w = f(x, y, z), then

w d 9 9 9 Jw

Fyxay20z = 3y ox 3y By 02 = fr202(%, ¥, 2) = foyy (X, ¥, 2).

w Find the four second partial derivatives of f(x, y) = x?y*.
Solution

filx, y) = 3xy*, Hlx,y) = 4x3y?,
d ]

i, y) = a—(3x2y4> = 6xy*, Pilx,y) = —@x*y?) = 12x%7,
X 0x
d a

fralx,y) = a—y—<3x2y“> = 12x7y°, falx,y) = 5(4x3y3> = 12x7y”.

Calculate foy3(x, v, 2), f232(x, y, 2), and fax(x, v, z) for the func-
tion f(x,v,z) = e 213,




Figure 12.19 A rectangle contained
in the disk where f and certain partiais
are continuous
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d ad o i
Solution  fon(x,y,7) = — — — " 2%
dz dy dy
:.a_i( 2e*~ 2»+3z)
dz dy
— ai (46/"‘2,V+3Z) — 12€X—2y+3z'
Z
a 9 9 x—2y+3z
S, y,2) = 5 92 3y
— i i ( 2ex—2y+3z)
ady 9z
— 83( 6e*~ 2)+3z) — 12523
y
3 3 9 x—2v+31
frolx,y,2) = 5 By 5
— i i ( x— 2y+3z)
ay dy
— ai ( 6™~ 2y+3z) — lzex—Zy+31.
y

In both of the examples above observe that the mixed partial derivatives taken with
respect to the same variables but in different orders turned out to be equal. This
is not a coincidence. It will always occur for sufficiently smooth functions. In
particular, the mixed partial derivatives involved are required to be continuous. The
following theorem presents a more precise statement of this important phenomenon.

Equality of mixed partials

Suppose that two mixed nth-order partial derivatives of a function f involve the
same differentiations but in different orders. If those partials are continuous at a
point P, and if f and all partials of f of order less than » are continuous in a
neighbourhood of P, then the two mixed partials are equal at the point P.

PROOF We shall prove only a representative special case, showing the equality of
fi2(a, b) and f>1(a, b) for a function f of two variables, provided fi, and f5, are
defined and f1, f>, and f are continuous throughout a disk of positive radius centred
at (a, b), and f1, and f5; are continuous at (a, b). Let & and k have sufficiently
small absolute values that the point (g + &, b + k) lies in this disk. Then so do
all points of the rectangle with sides parallel to the coordinate axes and diagonally
opposite corners at (a, b) and (a + h, b + k). (See Figure 12.19.)

Let Q= fla+h,b+k)— fa+h,b)— fla,b+k)+ f(a,b) and define
single-variable functions u(x) and v(y) by

u(x) = f(x,b+k)— f(x,b) and v(y) = fla+h,y)— fla,y).

Evidently Q = u(a + h) — u(a) and also Q = v(b + k) — v(b). By the (single-
variable) Mean-Value Theorem, there exists a number 6; satisfying 0 < 6; < 1 (so
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The Mean-Value Theorem is used
four times in this proof, each time
to write a difference of the form
g(p -+ m) — g(p) in the form
g'(c)m, where ¢ is some number
between p and p + m. Itis
convenient to write ¢ in the form
p + 6m, where 6 is some number
between 0 and 1.

that a + 8,k lies between a and a + h) such that
Q = u(a+h)y—u(a) = hu'(@+6ih) = h [ fila+6ih, b+k)— fila+6,h, b)].

Now we apply the Mean-Value Theorem again, this time to fi considered as a
function of its second variable, and obtain another number 6, satisfying 0 < 6, < 1
such that

fila+61h,b+k) — fia+0ih,b) =k fia(a +61h, b+ 62k).

Thus Q = hk fiz(a + 61h, b + 6:k). Two similar applications of the Mean-Value
Theorem to Q = v(b + k) — v(b) lead to Q = hk fr1(a + 03h, b 4 64k), where 03
and 64 are two numbers each between 0 and 1. Equating these two expressions for
Q and cancelling the common factor hk, we obtain

fia(a + 61h, b+ 6:k) = for(a + 03k, b + 64k).

Since f12 and f>) are continuous at (a, b), we can let i and k approach zero to
obtain fi2(a, b) = f»1(a, b), as required.

Exercise 16 below develops an example of a function for which fi> and f; exist
but are not continuous at (0, 0), and for which f1,(0, 0) £ £>1(0, 0).

Remark Partial Derivativesin Maple When you use the Maple function diff to
calculate a derivative, you must include the name of the variable of differentiation.
For example, diff (x"2+y"3, x)gives the result 2x. It doesn’t matter that the
function being differentiated depends on more than one variable since you are telling
Maple to differentiate with respect to x. If you wanted the derivative with respect
to y, you would input di £ f (x"2+y"3,v) and the output would be 3y2. In this
context, there is no distinction between ordinary and partial derivatives. There is,
however, a difference when you want to apply a differential operator to a function
f. If f is a function of one variable, you can denote its derivative f’ in Maple by
D (). For example,

> f := x -> sin(2*x); fprime := D(f);
fi=x —sin(2x)
fprime :=x — 2 cos(2x)
The input fprime (Pi/6) will now give the output 1, as expected.

If f is a function of two (or more) variables, then D (f) no longer makes
sense; do we mean f or f,? We distinguish the two (or more) first partials by using
subscripts with D.

> f := (X,y) -> exp(3*y) *sin(2*x) ;
fi=(x,y) > e xsin(2x)
> fone := D[1](f); ftwo := D[2] (f);
fone := (x,y) — 2¢® x cos(2 x)

Ftwo = (x,y) — 3¢ % sin(2 x)

Higher-order partials are denoted with multiple subscripts (within one set of square
brackets).
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> DI[1,1,2](f)(Pi/4, C);
—12

You don’t need to worry about the order of the subscripts in a mixed partial. Maple
assumes the partials are continuous, even if it doesn’t know what the function is.
Even if g has not been assigned any meaning during the current Maple session, the
input D[1,2] (g) (x,vy)-D[2,1] (g) (x,y) ; produces the output 0.

The Laplace and Wave Equations

Many important and interesting phenomena are modelled by functions of several
variables that satisfy certain partial differential equations. In the following exam-
ples we encounter two particular partial differential equations that arise frequently
in mathematics and the physical sciences. Exercises 17-19 below introduce another
such equation with important applications.

m Show that for any real number & the functions
z = cos(ky) and z = e sin(ky)

satisfy the partial differential equation

at every point in the x y-plane.

Solution For z = ¢ cos(ky) we have

g—i = ke cos(ky), g—i = —ké** sin(ky),

g_izz = ket costhy), % = —k2e** cos(ky).
Thus,

% + % = k> " cos(ky) — k? & cos(ky) = 0.

The calculation for z = e** sin(ky) is similar.

Remark The partial differential equation in the above example is called the (two-
dimensional) Laplace equation. A function of two variables having continuous
second partial derivatives in a region of the plane is said to be harmonic there
if it satisfies Laplace’s equation. Such functions play a critical role in the theory
of differentiable functions of a complex variable and are used to model various
physical quantities such as steady-state temperature distributions, fluid flows, and
electric and magnetic potential fields. Harmonic functions have many interesting
properties. They have derivatives of all orders, and they are analytic, that is, they
are the sums of their (multivariable) Taylor series. Moreover, a harmonic function
can achieve maximum and minimum values only on the boundary of its domain.
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Laplace’s equation, and therefore harmonic functions, can be considered in any
number of dimensions. (See Exercises 13 and 14 below.)

PPN It 7 and_ o are apv twice-differentiable functions of one variable,

Pw 58w

oz = ¢ ax2

Solution Using the Chain Rule for functions of one variable we obtain

311) ’ d ’ /
E:—cf/(x—ct)+cg(x+ct), a:f(x—ct)—l—g(x—}—ct),
92w 9w

— = f"(x—ct)+ g (x +et),

o = f"(x—ct)+¢"(x +ct).

ax?

Thus w satisfies the given differential equation.

Remark The partial differential equation in the above example is called the (one-
dimensional) wave equation. If ¢+ measures time, then f(x — ct) represents a
waveform travelling to the right along the x-axis with speed c. (See Figure 12.20.)
Similarly, g (x 4+ ct) represents a waveform travelling to the left with speed ¢. Unlike
the solutions of Laplace’s equation that must be infinitely differentiable, solutions
of the wave equation need only have enough derivatives to satisfy the differential
equation. The functions f and g are otherwise arbitrary.

timet =0

timet =1

c x
time r = 2
N —2¢)
Figure 12.20 w= f(x—ct) 2 e
c

represents a waveform moving to the
right with speed ¢
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In Exercises 1-6, find all the second partial derivatives of the
given function.

2. flr,y) =x2 42

4. 7=+/3x2+ 2

L z=x*1+y)

w =13y’

1=xe’ —ye'

. flx,y) = ln(l + sin(xy))

. How many mixed partial derivatives of order 3 can a
{unction of three variables have? If they are all continuous,
how many different values can they have at one point? Find
the mixed partials of order 3 for f(x, y, z) = x €*¥ cos(xz)
that involve two differentiations with respect to z and one
with respect to x.

N oo

Show that the functions in Exercises 8-12 are harmonic in the
plane regions indicated.
8. flx,y)=A@x2 - v3) + Bxy in the whole plane (A and B
are constants.)
9. fx,y)= 3x2y — y3 in the whole plane (Can you think of
another polynomial of degree 3 in x and y that is also
harmonic?)

10. f(x,y) =

3 > everywhere except at the origin

X y

11. f(x,y) = In(x? + y?) everywhere except at the origin

12. tan~!(y/x) except at points on the y-axis

13. Show that w = ¢>**% sin(5z) is harmonic in all of R3, that
1s, it satisfies everywhere the 3-dimensional Laplace

equation
2w 2w 3w
— + — + — =0.
ax2  9yr | 9z2

14. Assume that f(x, y) is harmonic in the xy-plane. Show that
each of the functions z f(x, y), x f(y¥,z),and y f(z, x) is
harmonic in the whole of R3. What condition should the
constants a, b, and c satisfy to ensure that f(ax + by, ¢z) is
harmonic in R3?

15. Suppose the functions u(x, y) and v(x, y) have continuous
sccond partial derivatives and satisty the Cauchy-Riemann

equations
ou dv dv du
— = and — = —,
ax  dy dx dy
Show that « and v are both harmonic.
2oy(x? =y .
#16. Let F(x, ) =1~ 2142 if (x, y) # (0,0)

0, if (x, y) = (0,0)
Calculate Fy(x, y), Fa(x, y), Fia(x, y), and Fo|(x, y) at
points (x, v) # (0, 0). Also calculate these derivatives at
(0, 0). Observe that F>;(0,0) = 2 and F2(0,0) = —2.
Does this result contradict Theorem 1? Explain why.

The heat (diffusion) equation

¢ 17. Show that the function u(x, ) = t~1/? e/ gatisfies the
partial differential equation

ou 92y
at

This equation is called the one-dimensional heat equation
because it models heat diffusion in an insulated rod (with
u(x, t) representing the temperature at position x at time ¢)
and other similar phenomena.

1) = 11 eI/

¢ 18. Show that the function u(x, y,

satisfies the two-dimensional heat equation

du 8%y

n 8%u
ar ax? 9y

& 19. By comparing the results of Exercises 17 and 18, guess a

solution to the three-dimensional heat equation

3%u
972"

du _ %u  0u

% a2 Ty

Verify your guess. (If you're feeling lazy, use Maple.)
Biharmonic functions
A function u(x, y) with continuous partials of fourth order is
2 32
biharmonic if il + Sl is a harmonic function.
ax?  ay?

€ 20. Show that u(x, y) is biharmonic if and only if it satisfies the
biharmonic equation

3u N 3u
ax2ay? = gyt

a%u

ot b =0

21. Verify that u(x, y) = x* — 3x2y? is biharmonic.

22. Show that if u(x, y) is harmonic, then v(x, y) = xu(x, y)
and w(x, y) = yu(x, y) are biharmonic.

Use the result of Exercise 22 to show that the functions in

Exercises 23-25 are biharmonic.

23, xe* siny 24. y In(x? + y?)

25 22

x“+y

Propose a definition of a biharmonic function of three
variables, and prove results analogous to those of Exercises
20 and 22 for biharmonic functions u(x, y, z).

& 26.

. Use Maple to verify directly that the function of Exercise 25
is biharmonic.
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The Chain Rule for functions of one variable is a formula that gives the derivative
of a composition f(g(x)) of two functions f and g:

d
. flg®) = f'(g(0)g'(x).

The situation for several variables is more complicated. If f depends on more
than one variable, and any of those variables can be functions of one or more
other variables, we cannot expect a simple formula for partial derivatives of the
composition to cover all possible cases. We must come to think of the Chain Rule
as a procedure for differentiating compositions rather than as a formula for their
derivatives. In order to motivate a formulation of the Chain Rule for functions of
two variables, we begin with a concrete example.

Suppose you are hiking in a mountainous region for which you
have a map. Let (x, y) be the coordinates of your position on the map (i.e., the
horizontal coordinates of your actual position in the region). Let z = f(x,y)
denote the height of land (above sea level, say) at position (x, y). Suppose you
are walking along a trail so that your position at time ¢ is given by x = u(¢) and
y = v(t). (These are parametric equations of the trail on the map.) At time ¢ your
altitude above sea level is given by the composite function

2= fu@®, v(t)) =g,

a function of only one variable. How fast is your altitude changing with respect to
time at time 1?

Solution The answer is the derivative of g(¢):

glt+h) —g®) _ i Flu@+n), v+ 1) — flu@), v())

"0 =l
g lim

h h—0 h
3 flu@ +h), vt +h) — fu@), vt + h))
= h
+ lim flu), vt + h)})l — fu@®,v) _

We added O to the numerator of the Newton quotient in a creative way so as
to separate the quotient into the sum of two quotients, in the first of which the
difference of values of f involves only the first variable of f, and in the second of
which the difference involves only the second variable of f. The single-variable
Chain Rule suggests that the sum of the two limits above is

g0 = filu®), v))u' () + folur), v ().

d
The above formula is the Chain Rule for 7 f (u(t), v(t)). In terms of Leibniz

notation we have
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A version of the Chain Rule

If 7:is a function of x and y with continuous first partial derivatives, and if
xand y-are differentiable functions of 1, then

dz =0z dx Bzd_y

dt 3x37+5§dt'

Note that there are two terms in the expression for dz/dt (or g'(¢)), one arising
from each variable of f that depends on 7.

Now consider a function f of two variables, x and y, each of which is in turn
a function of two other variables, s and ¢:
z=f(x,y), where x=u(s,t) and y=uv(s,1).

We can form the composite function

2= flus, 0. v(s,0) = g(s, .
For instance, if f(x,y) = x? + 3y, where u(s, 1) = s¢t*> and v(s,t) = s — ¢, then
g(s, 1) = s* +3(s — 1).

Let us assume that f, u, and v have first partial derivatives with respect to their

respective variables and that those of f are continuous. Then g has first partial
derivatives given by

gi1(s,0) = filuls, 1), v(s, D)ui s, 1) + foluls, 1), vis, D)vi(s, D),
8205, 1) = filuls, 1), v(s, D)uals, ) + fr{us, 1), v(s, D) va(s, 1).

These formulas can be expressed more simply using Leibniz notation:

Another version of the Chain Rule

If 7is'a function of x ‘and y with continuous first partial derivatives, and if
x and y depend on s and ¢, then

az__ 9z 0x .0z 3y
ds ~ dx as By s’

This can be deduced from the version obtained in Example 1 by allowing « and v
there to depend on two variables, but holding one of them fixed while we differentiate
with respect to the other. A more formal proof of this simple but representative case
of the Chain Rule will be given in the next section.

The two equations in the box above can be combined into a single matrix
equation:
dx Ox
dz 9dz\ _[(90z 9z ds o
(55 5) B (a 5) dy 9y

ds Ot
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We will comment on the significance of this matrix form at the end of the next
section.

In general, if 7 is a function of several “primary” variables, and each of these
depends on some “secondary” variables, then the partial derivative of z with respect
to one of the secondary variables will have several terms, one for the contribution
to the derivative arising from each of the primary variables on which z depends.

Remark Note the significance of the various subscripts denoting partial derivatives
in the functional form of the Chain Rule:

g1(s,8) = fi(u(s, 1), v(s, t))ul(s, 1)+ fz(u(s, ), v(s, D) (s, 1).

The “1” in g;(s, t) refers to differentiation with respect to s, the first variable on
which g depends. By contrast, the “1”"in fi (u(s, t), v(s, t)) refers to differentiation
with respect to x, the first variable on which f depends. (This derivative is then
evaluated at x = u(s, t), y = v(s, t).)

1
m If z = sin(x?y), where x = st? and y = s + . find 9z/ds and
dz/0t

(a) by direct substitution and the single-variable form of the Chain Rule, and
(b) by using the (two-variable) Chain Rule.

Solution
(a) By direct substitution:

1
z = sin ((stz)z(s2 + ;)) = sin(s*t* + %),

oz

3 @s3t* + 2st%) cos(s*t* + 5717),
A

9z 4.3 2,2 44, 23

vl (457’ + 3s°1°) cos(s"t" + 5°17).

(b) Using the Chain Rule:
dz 9z ox 0z Oy

3 9x a5 |y ds
(2xy cos(x?y))1* + (x* cos(x?y))2s

1
= <2st2 (s2 + ?) 2+ 2s3t4> cos(s?t* + s26%)

= As3t* + 2s%) cos(s*t* + 5%17),
9z oz 8x+818y
ar  dx 8t  dy at

= (2xycos(x?y))2st + (x> cos(x?y)) <:—21>

1 -1
= <2st2(s2 + ?)2st + 524 (t_2>> cos(s“t4 + s2t3)

= (4s*3 + 35%%) cos(s*t* + 5%1%).
Note that we still had to use direct substitution on the derivatives obtained in (b) in
order to show that the values were the same as those obtained in (a).
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0 d .
IESTE] Find a—f(xzy,x + 2y) and a—f(xzy,x -+ 2y) in terms of the
X y

partial derivatives of f, assuming that these partial derivatives are continuous.
Solution We have

a P 3

— 2y, x +2y) = fi(x%y, x +29)—&7y) + ey, x +2y)—(x +2y)

0x ax ax

= 2xyf1(x2y, x+2y)+ fz(xzy, x +2y),
d 3 P
oy %y, x +2y) = Ay x + 2y>5(x2y> + @y, x + 2)5; (e +2)

= 2 fi(x%y, x +29) + 2fo(xy, x + 2y).

|

LU LE N Express the partial derivatives of z = h(s, 1) = f(g(s, 1)) in terms
of the derivative f' of f and the partial derivatives of g.
Solution The partial derivatives of / can be calculated using the single-variable
version of the Chain Rule: if x = g(s, f), then z = f(x) and

9z dz ox ,
(s, === ——==f (8(s,))gi(s, 1),
9z dz ox ,
h = — = = .
2w ) === f (g(s,1))g2(s, 1)

u

The following example involves a hybrid application of the Chain Rule to a function
that depends both directly and indirectly on the variable of differentiation.

IS rFind dz/de, where z = f(x,y,8), x = g(t), and y = h(1).

(Assume that f, g, and 4 all have continuous derivatives.)

Solution Since z depends on ¢ through each of the three variables of f, there will
be three terms in the appropriate Chain Rule:

dz dz dx 93z dy 0z
Y= 4+ =22 4 =
dt dx dt dy dt 0t
= filx, y, 08’ @) + frlx, y, DR () + fo(x, y,1).

|

Remark In the above example we can easily distinguish between the meanings of
the symbols dz/dr and 9z/3¢. If, however, we had been dealing with the situation

2= f(x,y,s,1), where x = g(s,fr) and y = h(s,1),

then the meaning of the symbol dz/d¢ would be unclear; it could refer to the simple
partial derivative of f with respect to its fourth primary variable (i.e., f4(x, y, s, 1)),
or it could refer to the derivative of the composite function f(g(s, £), h(s, 1), s, 1).
Three of the four primary variables of f depend on ¢ and, therefore, contribute to
the rate of change of z with respect to ¢. The partial derivative f4(x, y, s, 7) denotes
the contribution of only one of these three variables. It is conventional to use 9z/3¢




736

CHAPTER 12 Partial Ditferentiation

to denote the derivative of the composite function with respect to the secondary
variable #:

3 d
% _ o F (@, 0, k(s 0),5.)

at
= fl(x7 y, s, t)gZ(sv t) + fZ(x9 y, s, t)hZ(s’ t) + f4(-x’ Y, s, t)~

When it is necessary, we can denote the contribution coming from the primary
variable t by

dz d
. = s Yo vt = s Vo 7t .
(at >x.y,s at f(x . ) f4(x P )

Here, the subscripts denote those primary variables of f whose contributions to the
rate of change of z with respect to ¢ are being ignored. Of course, in the situation
described above, (3z/0t), means the same as dz/0¢.

In applications, the variables that contribute to a particular partial derivative
will usually be clear from the context. The following example contains such an
application. This is an example of a procedure called differentiation following the
motion.

Atmospheric temperature depends on position and time. If we
denote position by three spatial coordinates x, v, and z (measured in kilometres),
and time by ¢ (measured in hours), then the temperature 7' is a function of four
variables, T(x, vy, z, t).

(a) If a thermometer is attached to a weather balloon that moves through the
atmosphere on a path with parametric equations x = f(t), y = g(t), and
z = h(t), what is the rate of change at time T of the temperature recorded by
the thermometer?

(b) Find the rate of change of the recorded temperature at time ¢ = 1 if
Xy
Tx,y,z,t) = ——{ +1),
.y, 2,0) = 7 n Z( )

and if the balloon moves along the curve
= = _ 2
x=t, y =2t, z7=1—1".

Solution

(a) Here, the rate of change of the thermometer reading depends on the change in
position of the thermometer as well as increasing time. Thus, none of the four
variables of T can be ignored in the differentiation. The rate is given by

dT__8de+8Tdy+8sz oT
dt — 9xdt  dydt dzdt 9t
The term 37 /3t refers only to the rate of change of the temperature with respect

to time at a fixed position in the atmosphere. The other three terms arise from
the motion of the balloon.




Figure 12.21

(a) Chart showing the dependence of
T on ¢t in Example 6

(b) Dependence chart for Example 7
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(b) The values of the three coordinates and their derivatives at t = 1 are x = 1,
y=2,z=0,dx/dt =1,dy/dt =2,and dz/dt = —1. Also,att =1,

oT y oT —Xy
ox 1+z( ) 0z (1+z)2( )
oT X oT xy
— =—{04+1t) =2, — = =2.
dy 1+z( ) at 1+z
Thus,
aT
ol = DD+ Q)+ (- +2 =14

t=1

The recorded temperature is increasing at a rate of 14 °/h at time ¢ = 1.
|

The discussion and examples above show that the Chain Rule for functions of
several variables can take different forms depending on the numbers of variables of
the various functions being composed. As an aid in determining the correct form
of the Chain Rule in a given situation you can construct a chart showing which
variables depend on which. Figure 12.21(a) shows such a chart for the temperature
function of Example 6. The Chain Rule for d7'/dt involves a term for every route

oT d
from 7T to ¢ in the chart. The route from 7 through x to ¢ produces the term o d—);
X
and so on.
T l l |
I U v r
T T 1 11
x y z t x oy l_j_l x y r x v
t t t X y x y
(a (b)

Write the appropriate Chain Rule for dz/9x, where z depends on
u, v, and r; u and v depend on x, y, and r; and r depends on x and y.

Solution The appropriate chart is shown in Figure 12.21(b). There are five routes
from z to x:

0z dou or

du or dx

dz dv
v 9x

dz dv or

dv dr dx

dz or

0z _ 0z du
r dx’

ﬁ_auax

Homogeneous Functions

A function f(xy, ..
every point (x1, x7, ..

.. X,) is said to be positively homogeneous of degree & if, for
., Xy) 1n its domain and every real number r > 0, we have

fltxy, txo, ..., tx,) = flxr, ..., x0).
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For example,

2

fx,y=x*+xy—y is positively homogeneous of degree 2,

fl,y)=yx24+y?

is positively homogeneous of degree 1,

2
fx,y) = A is positively homogeneous of degree 0,
x2+y?
- 5
fG&,y,29)= % is positively homogeneous of degree —1,
Yz —2

flx,y)= x4 y is not positively homogeneous.

Observe that a positively homogeneous function of degree 0 remains constant along
rays from the origin. More generally, along such rays a positively homogeneous
function of degree k grows or decays proportionally to the kth power of distance
from the origin.

Euler’s Theorem

If f(xy,...,x,) has continuous first partial derivatives and is positively homoge-
neous of degree k, then

D o xifiler, oo xa) = kf(x1, . Xn).
i=l

PROOF Differentiate the equation f(¢x;, fxz,...,1x,) = t* fxi, ..., x,) with
respect to ¢ to get
xifiltxg, oo txg) Fx2foltxy, oo txg) oo g fr(txy, oL )
=kt* . x).
Now substitute ¢ = 1 to get the desired result.
—

Note that Exercises 26-29 in Section 12.3 illustrate this theorem.

Higher-Order Derivatives

Applications of the Chain Rule to higher-order derivatives can become quite compli-
cated. It is important to keep in mind at each stage which variables are independent
of one another.

2

dxdy
the function f. Assume that the second-order partials of f are continuous.

S ETNTR: N Calculate f(x* — ¥, xy) in terms of partial derivatives of

Solution In this problem symbols for the primary variables on which f depends
are not stated explicitly. Let them be # and v. The problem therefore asks us to find
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2
dx0dy

First differentiate with respect to y:

fu, vy, where u =x? — y2 and v =xy.

8

oy flu,v) = =2yfi(u, v) + xfa(u, v).
Now differentiate this result with respect to x. Note that the second term on the
right is a product of two functions of x so we need to use the Product Rule:

2

axady

£ v) == 25 (2811w, v) + o, v))

+ ol v) + 1 (20 f51 0, 0) + 3 faa 0, ) )
= folu, v) — dxyfii(u, v) + 2(x% — ¥ frau, v) + xyf0(u, v).

In the last step we have used the fact that the mixed partials of f are continuous so
we could equate fj, and f;).

|

Review the above calculation very carefully and make sure you understand what is
being done at each step. Note that all the derivatives of f that appear are evaluated
at (u,v) = (x> — ¥y, xy), not at (x, y), because x and y are not themselves the
primary variables on which f depends.

Remark The kind of calculation done in the above example (and the following
ones) is easily carried out by a computer algebra system. In Maple:

> g = (x,y) -> £(x"2 - yv72, x*y);
simplify (D[1,2] (g) (X,v));

—4y Dy ()& = Y2 xy)x — 2% Dio(f)(x® — y2, xy)y?
+ 2D 2 (f)(x* — ¥, xy)x?

+xD22() =y xy)y + Da(f)* = y2, xy)
which, on close inspection, is the same answer we calculated in the example.

SENIEER  Show that f(x? — y?, 2xy) is a harmonic function if f(x, y) is
harmonic.

Solution Letu = x> — y?>and v = 2xy. If z = f(u, v), then

g—z = 2xf1(u, v) + 2yfalu, v),
X

9

£ = —2yfi(u, v) + 2xf>(u, v),

8%z
—-8x2 = 2f1(u, U) =+ 2x(2xf11(u, U) + 2yf12(u, U))

+ 2y (2x far(u, v) 4 2y (u, v))
=2fi(u, v) + 4x2 1, (u, v) + 8xyf12(u, v) + 4y foo (11, V),
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2—;2 = —=2f1(u, v) — 2y(=2yf11(u, v) + 2xf12(u, )
+ 2x (=2yfa1(u, v) + 2x f2o(u, v))
= =21 (u, v) +4y” fi1(u, v) — 8xyfi2(u, v) + 4x° fra(u, v).
Therefore,
% + 3—; = 4(x% + y)(fu(u, v) + fo(u,v)) =0
because f is given to be harmonic. Thus, z = f(x* — y2, 2xy) is a harmonic
function of x and y. .

In the following example we show that the two-dimensional Laplace differential
equation (see Example 3 in Section 12.4) takes the form

3%z 1az 1 9%z

ar2 ' ror | r2 002

when stated for a function z expressed in terms of polar coordinates r and 6.

S eIV (Laplace’s equation in polar coordinates) If z = f(x, y) has
continuous partial derivatives of second order, and if x = r cos6 and y = rsin8,

show that

8%z 19z 1 3% ¥z @
o othgis e il
ar? . ror  r206%  93x? 9y

Y

N

Solution 1t is possible to do this in two different ways; we can start with either
side and use the Chain Rule to show that it is equal to the other side. Here, we will
calculate the partial derivatives with respect to r and 6 that appear on the left side
and express them in terms of partial derivatives with respect to x and y. The other
approach, involving expressing partial derivatives with respect to x and y in terms
of partial derivatives with respect to r and 0, is a little harder. (See Exercise 24
below.) However, we would have to do it that way if we were not given the form of
the differential equation in polar coordinates and had to find it.

First note that

0 d d a
—x=c0s6‘, —x=—rsin9, —y:sine, —y=rc089.
ar a6 ar a0
Thus,
Eee 3z Az dx 3z 3 3
This is a difficult but important L Ry cosf — + sin 6 %
ar  dOx dr  dydr 9x ay

example. Examine each step
carefully to make sure you

o Now differentiate with respect to r again. Remember that r and € are independent
understand what is being done.

variables, so the factors cos8 and sin 6 can be regarded as constants. However,
dz/dx and dz/0y depend on x and y and, therefore, on r and 8.




0z
a0

96?

r

9%z 1 0z
orz r or

= cos’f B + 2cosfsinf
- Ax? 3

+r cos6<—r sin &

0 32 32 )
=—r ad +r2(sin29 7z — 2sin6 cos O 7 + cos? 6 —Z)
3 dx2? 9x3y
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0% = cosf 0 9z + sin g 0
ar2 ar dx ar dy
8%z 2z . 8%z . 2z
= cos@(cos@ Pys] + sin @ 8y8x> + sinf (cos@ oxdy + sin 4 a—y2>

2 32
+sin’ 6 ——Z.
xdy dy2

We have used the equality of mixed partials in the last line. Similarly,
0

= —r sinf had +r cosé —Z.
dax ay

When we differentiate a second time with respect to 6 we can regard r as constant,
but each term above is still a product of two functions that depend on 6. Thus,

d 0z

92 @ d d 0
gz =—r(cos€ a—z +sinf — —) +r<—sin9 B_Z +cosf — —Z)
y

30 ox 30 dy

2 2

0 a ]
:—r—z—rsine(—rsine—z—f-rcose Z)
ar ax? dydx

2 8%z
+ r cosé ——)
9xdy ay?

2

dy?

Combining these results, we obtain the desired formula:

1 9%z 9%z 8%
r2 962 9x2 - 9y?’

| Exercises 12.5

In Exercises 1-4, write appropriate versions of the Chain Rule
for the indicated derivatives.

1.

dw/otif w= f(x,y,z), where x = g(s,1), y = h(s,1),
and z = k(s,1)

. dw/otif w = f(x.y,z), where x = g(s), y = h(s, t), and

z=k()

. 97/0u if z = g{(x, y), where y = f(x) and x = h(u, v)
cdw/dtifw= f(x,y),x=g@rs),y=h(rt),r =k(s,t),

and s = m(t)

. fw=f(x,y, z), where x = g(y, z) and y = h(z), state

. . . dw ow
appropriate versions of the Chain Rule for 7 3 )
4 4
X

and B_w .
az X.¥

a
9. — f(2x,3y)
ox

3 2
. 3xf(y,X)

. Suppose that the temperature T in a certain liquid varies

. Use two different methods to calculate du/dt if

u=+x2+y2, x=e¢" andy =1+ s2cost.

. Use two different methods to calculate 9z /dx if

z=tan"Nu/v),u =2x +y,and v = 3x — .

. Use two methods to calculate dz/dt given that z = txy?,

x=t+In(y+r3),and y = ¢'.

In Exercises 9-12, find the indicated derivatives, assuming that
the function f(x, y) has continuous first partial derivatives.

]
10. — fF(2y, 3x)
ax

1. %f(yf(x,t), f(yJ))

with depth z and time ¢ according to the formula 7 = ez,

Find the rate of change of temperature with respect to time
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at a point that is moving through the liquid so that at time ¢
its depth is f(r). What is this rate if f(f) = ¢'? What is
happening in this case?

14. Suppose the strength E of an electric field in space varies
with position (x, y, z) and time ¢ according to the formula
E = [(x,y,z,t). Find the rate of change with respect to
time of the electric field strength measured by an instrument
moving through space along the helix x = sint, y = cost,
=1

In Exercises 15-20, assume that f has continuous partial

derivatives of all orders.

15. If ; = f(x, y), where x = 25 + 3t and y = 35 — 2¢, find
8%z 92z
dsdt’ ar?’

2
i

PR and ©)
(J!

() (b)
16. 1f f(x. y) is harmonic, show that f { —— RA
. . v) is harmonic, show thai —_— ——— ] 18
Sy 12 42
also harmonic.
82
17. If x =¢sins and y = fcos s, find —— f(x, y).
ds0t

18. Find Eix;yz f(2x 4+ 3y, xy) in terms of partial derivatives
of f.

19. Find ,)8; f(yz, xy. —x2) in terms of partial derivatives of
the fu(n'ztizn f.

20. Find (’?t;as f(s2 —t.s+ t2) in terms of partial derivatives
of f.

21. Suppose that u(x, v) and v(x, y) have continuous second
partial derivatives and satisty the Cauchy—Riemann
equations

du dv v ou
—=— and —=-—.
dx ay dx ay

Suppose also that f(u«, v) is a harmonic function of u and v.
Show that f (u (x, ¥), v(x, y)) is a harmonic function of x
and y. Hint: u and v are harmonic functions by Exercise 15
in Section 12.4.

22. 077 = x% 4 y2 4 22, verify that u(x, y, z) = 1/r is
harmonic throughout B? except at the origin.

«23. If v = e cost,y = e sint, and 7 = u(x, y) = v(s, t), show
that
97z 4 ¥z 2 49 3%z N 32z
— =(x — 4+ — .
as? 912 Y\ a2 ay?

. (Converting Laplace’s equation to polar coordinates)
The transformation to polar coordinates, x = r cos 8,
v = rsiné, implies that 2 = x2 + y2 and tan 6 = y/x. Use

these equations to show that

ar
B_r = cos @ — =siné
ax dy
a0 sind 90 cosd
ax r ay r
0%u a2u
Use these formulas to help you express —; + — 1n terms
ax2  oy2

of partials of u with respect to r and 8, and hence reprove
the formula for the Laplace differential equation in polar
coordinates given in Example 10.

25, Ifu(x,y) = r2 Inr, where 2 =x2 4 yz, verify that u is a
biharmonic function by showing that

9% 92 2u  8u
i \laataz) ="
ax dy dx ay

26. If f(x, y) is positively homogeneous of degree k and has
continuous partial derivatives of second order, show that

X2 f11(x, y) + 21205, y) + ¥ fa(x, y)
=kt —1Df(x,y).

% 27. Generalize the result of Exercise 26 to functions of n

variables.

* 28. Generalize the results of Exercises 26 and 27 to expressions

involving mth-order partial derivatives of the function f.
Exercises 29-30 revisit Exercise 16 of Section 12.4. Let

2y(x® —y?)
W’ if (x,y) # (0,0

0, if (x, y) = (0, 0).
29. (a) Show that F(x, y) = —F(y, x) forall (x, y).
(b) Show that Fi(x,y) = —F2(y,x) and
Fia(x, y) = —Fa1(y, x) for (x, y) # (0, 0).
(c) Show that Fy (0, y) = —2y for all y and, hence, that
F12(0,0) = 2.

(d) Deduce that F>(x, 0) = 2x and F»;(0, 0) = 2.
30. (a) Use Exercise 29(b) to find Fy2(x, x) for x # 0.
(b) Is Fia2(x, y) continuous at (0, 0)? Why?

Use the change of variables & = x + ¢f, n = x to transform
the partial differential equation

F(x,y)=

$ 31.

du du ( tant)
— =c—, ¢ = constant),
ot 0x

into the simpler equation dv/dn = 0, where

v(&,n) = v(x + ct, x) = u(x, t). This equation says that
v(&, n) does not depend on 7, so v = f (&) for some
arbitrary differentiable function f. What is the

corresponding “general solution” u(x, 7) of the original
partial differential equation?
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© 32. Having considered Exercise 31, guess a “general solution”
w(r, s) of the second-order partial differential equation
82
aras

Your answer should involve two arbitrary functions.

w(r,s) =0.

¢ 33. Use the change of variables r = x +c¢t, s = x — ct,
w(r, s) = u(x, 1) to transform the one-dimensional wave
equation

8%u 5 3%u

to a simpler form. Now use the result of Exercise 32 to find
the general solution of this wave equation in the form given
in Example 4 in Section 12.4.

© 34. Show that the initial-value problem for the one-dimensional
wave equation

i (X, 1) = iy (x, 1)
u(x, 0) = p(x)
u(x,0) = g(x)

has the solution

x+ct

1
u(x, t) = E[p(x—ct)—{-p(x-|-ct)]_|_Z /

X—ct

B 37. Exercise 19

q(s)ds.

[T

(Note that we have used subscripts “x” and “¢” instead of
“1” and “2” to denote the partial derivatives here. This is
common usage in dealing with partial differential equations.)

Remark The initial-value problem in Exercise 33 gives the
small lateral displacement u(x, ) at position x at time ¢ of a
vibrating string held under tension along the x-axis. The
function p(x) gives the initial displacement at position x, that is,
the displacement at time ¢ = 0. Similarly, g(x) gives the initial
velocity at position x. Observe that the position at time ¢
depends only on values of these initial data at points no further
than ¢t units away. This is consistent with the previous
observation that the solutions of the wave equation represent
waves travelling with speed c.

Redo the Examples and Exercises listed in Exercises 35-40
using Maple to do the calculations.

35. Example 10 36. Exercise 16
38. Exercise 20

39. Exercise 23 40. Exercise 34

nd Differentials

The tangent line to the graph y = f(x) at x = g provides a convenient approxima-
tion for values of f(x) for x near a (see Figure 12.22:

f)~ L(x) = f(a) + f(@)(x — a).

Here, L(x) is the linearization of f at a; its graph is the tangent line to y = f(x)
there. The mere existence of f'(a) is sufficient to guarantee that the error in the

9 approximation (the vertical distance between the curve and tangent at x) is small
y = f(x) compared with the distance # = x — a between a and x, that is,
. flath)y=La+h) . fla+h) — fla)— fl(@)h
lim = lim
P = (a, f(a)) h—0 h—0 h
fx) fla+h)— f(a)
=1 LS A A
N : | A Lim P f(a)
a X X = f'(a) — f'(a) = 0.
Figure 1222 The linearization of f  Similarly, the tangent plane to the graph of z = f(x, y) at (a,b) is z = L(x, y),
atx =a where

Lix,y) = fla.b)+ fi(a,b)(x —a) + f2(a,b)(y — )

is the linearization of f at (a, b). We can use L(x, y) to approximate values of

f(x,y) near (a, b):

SO, y) = Lx,y) = fla,b) + fi(a,b)(x — a) + fr(a, b)(y — b).




744  CHAPTER 12 Partial Differentiation

m Find an approximate value for f (x, y) = +/2x? + e?at (2.2, —0.2).

Solution ltis convenient to use the linearization at (2, 0), where the values of f
and its partials are easily evaluated:

f2,0)=3,

A& ) x 4
x’ = *—_—-’ —_—

1 y /2x2 +eZy f1(2,0) —_ 3’
e 1

Hlx,y) = W, H2,0 = 3

4 1
Thus, L(x,y) =3+ g(x —2)+ g(y —0),and

4 1
f2.2,-02)~ L(22,-02)=3+ 5(2.2 -2)+ 5(—0.2 —-0)=32.

(For the sake of comparison, f(2.2, —0.2) = 3.2172 to 4 decimal places.)

Unlike the single-variable case, the mere existence of the partial derivatives fi(a, b)
and f2(a, b) does not even imply that f is continuous at (a, b), let alone that the
error in the lincarization is small compared with the distance \/ (x —a)+ (y —b)?
between (a, b) and (x, y). We adopt this latter condition as our definition of what
it means for a function of two variables to be differentiable at a point.

We say that the function f(x, y) is differentiable at the point (a, b) if

g Lethbtk)—fab) —hfitab)—kfiab)
(1) (0,0) /W2 1 k2 =

This definition and the following theorems can be generalized to functions of any
number of variables in the obvious way. For the sake of simplicity, we state them
for the two-variable case only.

The function f (x, y) is differentiable at the point (a, b) if and only if the surface
z = f(x,y) has a nonvertical tangent plane at (a, b). This implies that f(a, b)
and f>(a, b) must exist and that f must be continuous at (a, b). (Recall, however,
that the existence of the partial derivatives does not even imply that f is continuous,
let alone differentiable.) In particular, the function is continuous wherever it is
differentiable. We will prove a two-variable version of the Mean-Value Theorem
and use it to show that functions are differentiable wherever they have continuous
first partial derivatives.

A Mean-Value Theorem

If fi(x,y) and f»(x, y) are continuous in a neighbourhood of the point (a, b), and
if the absolute values of /2 and k are sufficiently small, then there exist numbers 6,
and 6,, each between 0 and 1, such that

fla+h,b+k)— f(a,b)=hfi(a+ 601h, b+ k)+ kfr(a, b+ 6:k).
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PROOF The proof of this theorem is very similar to that of Theorem I in Sec-
tion 12.4, so we give only a sketch here. The reader can fill in the details. Write

fla+h, b+k)—f(a,b) = (f(a+h, b+k)— f(a, b+k))+(f (a. b+k)~ f(a, b)),

and then apply the single-variable Mean-Value Theorem separately to f(x, b + k)
on the interval between a and a + h, and to f(a, y) on the interval between b and
b + k to get the desired result.

If f| and f> are continuous in a neighbourhood of the point (a, b), then f is
differentiable at (a, b).

PROOF Using Theorem 3 and the facts that

h k
— | < and —| <1,
/h2+k2 /h2+k2

we estimate
4f(a+h,b+k)—f(a,b)—hfl(a,b)—kfz(a,b)‘
NaEve

fila+ 6 b+ 6 - fila, b))

h
N ‘ﬁ(
k
+ (@b + 00~ e )|

<|fila+6ih,b+k) — fila.b)| +|f2la, b+ 6:k) — fola, b)|.

Since f and f> are continuous at (a, b), each of these latter terms approaches 0 as
h and k approach 0. This is what we needed to prove.

We illustrate differentiability with an example where we can calculate directly the
error in the tangent plane approximation.

ISR Calculate f(x +h,y + k) — f(x.y) = filx, h — folx, y)k if
fley) =x3+xy%

Solution Since fi(x, y) = 3x>+ y? and fo(x, y) = 2xy, we have

Jx+hy+k)— flx,y)— filx, h = falx, y)k
=@+ + @+ +k)?—x3 —xy? — Bx 4+ yHh — 2xyk
= 3xh® 4 b + 2yhk + hk* + xk>.
Observe that the result above is a polynomial in /4 and k with no term of degree less
than 2 in these variables. Therefore, this difference approaches zero like the square
of the distance ~/hZ + k2 from (x, y) to (x + /4,y + k) as (h, k) — (0, 0), so the
condition for differentiability is certainly satisfied:
e e L L L
(h.)—(0.0) /n2 ¥ k2 -

This quadratic behaviour is the case for any function f with continuous second
partial derivatives. (See Exercise 19 below.)

0.
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meonem (@)

Proof of the Chain Rule

We are now able to give a formal statement and proof of a simple but representative
case of the Chain Rule for multivariate functions.

A Chain Rule

Letz = f(x,y), where x = u(s, t) and y = v(s, t). Suppose that
(i) u(a,b) = pandv(a,b) =gq,
wi(a, b) = fi(p, Qui(a, b) + fo(p. @vi(a. b),”
wa(a, by = fi(p, uala, b) + fo(p, q)v2(a, b),

that is,
] az d 9z d ] a az d
9z _dzox dzdy 0 9z dzdx  0zdy
ds dx ds  Jy Os dt  dx ot 9y 9t

PROOF Define a function E of two variables as follows: E(0,0) = 0, and if
(h, k) # (0, 0), then
fp+hqg+k)— f(p.q)—hfi(p,q) —kfr(p, q)

VhZ+ i '
Observe that E(h, k) is continuous at (0, 0) because f is differentiable at (p, g).
Now,

E(h, k) =

fp+hqg+k)—f(p.q)=hfi(p.q)+kfe(p.q) +Vh* + k> E(h, k).

In this formula put » = u(a + o, b) — ufa, b) and k = v(a + o, b) — v(a, b) and
divide by o to obtain

wla+o,b)—wla,b)  f(ula+o,b),via+o,b))— f(ua,b), via, b))
o

(e
_JSpth gtk - fp.q)
g

= fi(p,q) g + f2(p, 9) g + 4/ (g)z + (S)z E(h, k).

We want to let o approach 0 in this formula. Note that

h . b) — u(a, b
lim = fi YO T OB u@b)
o0 0 o—0 g

and, similarly, lim,_,o(k/0) = vi(a, b). Since (h, k) — (0,0) if 0 — 0, we have
wila, b) = fi(p, qui(a, b) + fo(p, g)vi(a, b).

The proof for w, is similar.
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Differentials
If the first partial derivatives of a function z = f(x1, ..., x,) exist at a point, we

may construct a differential dz or df of the function at that point in a manner
similar to that used for functions of one variable:

0z 9z

az
dz =df = —dx; + —dxy + - --
¢ f axl xt BXQ X+ + 8x,,

= filxn X dxn 4+ fu(xn e X)) dit

dx,

Here, the differential dz is considered to be a function of the 2r independent
variables x1, x2, ..., X,, dx1, dxs, ..., dx,.

For a differentiable function f, the differential df is an approximation to the
change A f in value of the function given by

Af = f(x1+dxy, ..., x, +dx,) — f(x1,...,%,).

The error in this approximation is small compared with the distance between the
two points in the domain of f, that is,

Af —df
V@Ax)Z - F (dx,)?

—~ 0 ifalldy; —>0, (1<i<n).

In this sense, differentials are just another way of looking at linearization.

m Estimate the percentage change in the period

L
T =2m[—
g

of a simple pendulum if the length L of the pendulum increases by 2% and the
acceleration of gravity g decreases by 0.6%.

Solution We calculate the differential of T':

ar = ar+ L4
oL ‘Tt 50 48
2 2L
=T aL- ”‘/_dg.
2JLg 2g3?
We are given that d L 2 L andd 6 Th
a 1ven al = — a = e ‘&
g 100~ A48 ="10008 MU

1 L
100 "V g 1,000/ 2 Vg _ 1,000

Eherefore, the period T of the pendulum increases by 1.3%.
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Functions from n-space to m-space

(This is an optional topic.) A vector f = (fi, fa, ..., fm) of m functions, each
depending on r variables (xi, x2, . . ., X,), defines a rransformation (i.e., a function)
from R* to R™; specifically, if x = (x1, x2, ..., x,) is a pointin R?, and

vi = filxy, X2, ..., Xp)
2 = falxr, X2, ..., Xp)

Ym = fn(x1, X2, ..., X0),

then y = (y1,¥2,..., ym) is the point in R™ that corresponds to x under the
transformation f. We can write these equations more compactly as

y = f(x).

Information about the rate of change of y with respect to x is contained in the various
partial derivatives dy; /9x;, (1 <i <m, 1 < j < n), and is conveniently organized
into an m x n matrix, Df(x), called the Jacobian matrix of the transformation f:

o
dxp o 9x ax,
ooy
DEx)y=1 3x; 09x ax,
Ym Bm D
8xy 0x . ox,

The linear transformation (see Section 10.6) represented by the Jacobian matrix is
called the derivative of the transformation f.

Remark We can regard the scalar-valued function of two variables, f(x, y) say,
as a transformation from R? to R. Its derivative is then the linear transformation
with matrix

Df(x,y) = (filx,y), Hr(x, ).

It is not our purpose to enter into a study of such vector-valued functions of a
vector variable at this point, but we can observe here that the Jacobian matrix of
the composition of two such transformations is the matrix product of their Jacobian
matrices.

To see this, let y = f(x) be a transformation from R” to R" as described above,
and let z = g(y) be another such transformation from R” to R* given by

1 = gl(YI, y2, -~-9ym)
22 =82(¥1, Y2, .., Ym)

Ze =8V, Y2, ooy Ym)s
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which has the k& x m Jacobian matrix

321 321 321
Dg(y)=| v 9y2 Ym
dzk 3ﬂ %
_3; 8y2 3Ym

Then the composition z = g o f(x) = g(f(x)) given by

71 :gl(fl(xl,...,x,,),...,fm(xl,...,xn))
2=g(filn, X0 fu(xn X))

ze=g( Al X0 s fuXn L X))

has, according to the Chain Rule, the £ x n Jacobian matrix

01 9z 9z 9z 9z 9zr dyr v
ax;  9xy 3x, Iy oy 3Vm ox;  ox
0z, 022 022 922 @ 3—12_ dys Oy
ax; ox ax, | =| o A OYm ox1 A
dzr 0z azk 9z 0z Azx m Oy
ax;  9x 0x, 8y, oy Y x1

This is, in fact, the Chain Rule for compositions of transformations:

D(g o f)(x) = Dg(f(x)) Df(x),

749

9y
dax,
ay2
0xy,

3 Yom

0x,

and exactly mimics the one-variable Chain Rule D(g o f)(x) = Dg( f (x))D f(x).

The transformationy = f(x) also defines a vector dy of differentials of the variables
¥i in terms of the vector dx of differentials of the variables x;. Writing dy and dx

as column vectors we have

o o
d dxy o dx dx, d
dyl Ay Oy 3y2 dxl :
2 == = X
dy = 5 =4 dx; - 8xa oxy; . = DFf(x)dx.
Dol |\ tw Bu | B | N
Oxy - 0x 0x,

to R?® given by
f(x,y) = (xe’ + cos(ny), x*, x — &)

and use it to find an approximate value for £(1.02, 0.01).

(€1 IR Find the Jacobian matrix Df(1, 0) for the transformation from R?
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Solution Df(x,y) is the 3 x 2 matrix whose jth row consists of the partial
derivatives of the jth component of f with respect to x and y. Thus,

e’ xe¥ — msin(mwy) 1 1
DE(1,0) = (2x 0 ) - (2 o).
1 —ey (1,0) 1 '—1
Since £(1,0) = (2, 1, 0) and dx = (8'8?), we have
11 0.03
df = DE(1,0) dx = (2 o) (8'8?) - (0.04> .
11/ \Y 0.01

Therefore, £(1.02, 0.01) =~ (2.03, 1.04, 0.01).
-

For transformations between spaces of the same dimension (say from R" to R"), the
corresponding Jacobian matrices are square and have determinants. These Jacobian
determinants will play an important role in our consideration of implicit functions
and inverse functions in Section 12.8 and in changes of variables in multiple integrals
in Chapter 14.

Maple’s linalg package has a function jacobian that takes two inputs, a vector
of expressions and a vector of variables, and produces the Jacobian matrix of the
partial derivatives of those expressions with respect to the variables. For example,

> with(linalg):

>

ye
cos(z) 2cos(z)

| Exercises 12.6

Jjacobian([x*y*exp(z),

(x+2*y)*cos(z)],[x,vy,z]);

xet xye*
—(x 4+ 2y) sin(z)

In Exercises 1-6, use suitable linearizations to find approximate
values for the given functions at the points indicated.

1. fox,y) =x%y*at(3.1,0.9)

2 f(xy) =tan”! (l) at (3.01,2.99)
X
3. fix,v)=sin(xy + Iny) at (0.01, 1.05)
4, fx,y) = —————at(2.1,1.8
Jxy) x2+xy+y2a( )
5. f(x,v,2) =+/x+2y+3zat(1.9,1.8,1.1)

6. [(x.v)=xe" ™ at (2.0, —3.92)

. The edges of a rectangular box are each measured to within
an accuracy of 1% of their values. What is the approximate
maximum percentage error in

(a) the calculated volume of the box,
(b) the calculated area of one of the faces of the box, and
(¢) the calculated length of a diagonal of the box?

. The radius and height of a right-circular conical tank are
measured to be 25 ft and 21 ft, respectively. Each
measurement is accurate to within 0.5 in. By about how

g 10.

B 1L

B 12

much can the calculated volume of the tank be in error?

. By approximately how much can the calculated area of the

conical surface of the tank in Exercise 8 be in error?

Two sides and the contained angle of a triangular plot of
land are measured to be 224 m, 158 m, and 64°,
respectively. The length measurements were accurate to
within 0.4 m and the angle measurement to within 2°. What
is the approximate maximum percentage error if the area of
the plot is calculated from these measurements?

The angle of elevation of the top of a tower is measured at
two points A and B on the ground in the same direction
from the base of the tower. The angles are 50° at A and 35°
at B, each measured to within 1°. The distance A B is
measured to be 100 m with error at most 0.1%. What is the
calculated height of the building, and by about how much
can it be in error? To which of the three measurements is the
calculated height most sensitive?

By approximately what percentage will the value of
2,3
x

4

increase or decrease if x increases by 1%, y
z
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increases by 2%, and z and increases by 3%? # 18. Prove the following version of the Mean-Value Theorem: if
13. Find the Jacobian matrix for the transformation f (.x, y) has ﬁrsF partl.al derlvatlve§ continuous near every
f(r,0) = (x. v), where point of the straight line segmem'Jommg the points '(a, l.a)
and (a + h, b + k), then there exists a number 6 satisfying
x=rcos and y=rsinb. 0 <6 < 1 such that
(Although (r, 8) can be regarded as polar coordinates in the fla+h,b+k)=f(a, b)+hfi(a+6h,b-+06k)
xy-plane, they are Cartesian coordinates in their own +kfola + Oh, b+ 6k).
r(-plane.)
14. Find the Jacobian matrix for the transformation (Hint: apply the single-variable Mean-Value Theorem to
f(p.$.0) = (x, v, 2), where g(t) = fla+th, b+tk).) Why could we not have used this
] ' result in place of Theorem 3 to prove Theorem 4 and hence
x =psingcost, y=psingsing. z=pcosd. the version of the Chain Rule given in this section?
# 19, Generalize Exercise 18 as follows: show that, if f(x, y) has

15.

16.

17.

Here (p, ¢, 0) are spherical coordinates in xyz-space. They
will be formally introduced in Section 14.5.

Find the Jacobian matrix Df(x, y, z) for the transformation
of R3 to R? given by
2 2

f(x,y,2) = (x"+yz,y" —xInz).
Use Df(2, 2, 1) to help you find an approximate value for
f(1.98,2.01, 1.03).
Find the Jacobian matrix Dg(1, 3, 3) for the transformation
of B3 to R® given by

gr,s.1) = (rs, r’1, 5> —1?)

and use the result to find an approximate value for
£(0.99, 3.02, 2.97).

Prove that if f(x, y) is differentiable at (a, b), then f(x, y)
is continuous at (a, b).

continuous partial derivatives of second order near the point
(a, b), then there exists a number @ satisfying 0 < 6 < 1
such that, for 2 and k sufficiently small in absolute value,

fla+h,b+k)=f(a,b)+hfi(a, b)+kfra b)
+ h? fi1(a + 6h, b + 0k)
+ 2hkfi2(a + 6h, b + 6k)

+ k2 faoa + 6h, b + 6k).

Hence, show that there is a constant K such that for all
sufficiently small 4 and £,

|fa+hb+k) — fla.b)—hfi(a,b) = kfaia.b)|
< K(h*+1%).

A first partial derivative of a function of several variables gives the rate of change
of that function with respect to distance measured in the direction of one of the
coordinate axes. In this section we will develop a method for finding the rate of
change of such a function with respect to distance measured in any direction in the
domain of the function.

To begin, it is useful to combine the first partial derivatives of a function into
a single vector function called a gradient. For simplicity, we will develop and
interpret the gradient for functions of two variables. Extension to functions of three
or more variables is straightforward and will be discussed later in this section.

At any point (x, y) where the first partial derivatives of the function f(x, y)
exist, we define the gradient vector Vf (x, y) = grad f(x, y) by

Vfx,y) =grad f(x,y) = fi(x, y)i+ falx, y)j.
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Figure 12.23 The gradient of
flx, vy =x2+ yZat (1,2) is normal to
the level curve of f through (1, 2)

“THEOREM o

Recall that i and j denote the unit basis vectors from the origin to the points (1, 0)
and (0, 1) respectively. The symbol V, called del or nabla, is a vector differential
operator:

9 9
Vei— +j—
iz ey

We can apply this operator to a function f(x, y) by writing the operator to the left
of the function. The result is the gradient of the function

9
Vi, y)= (1 T +ij —) f, ) = fHile, i+ falx, y)j.

We will make extensive use of the del operator in Chapter 16.

If f(x,y) =x?+ y% then Vf(x,y) = 2xi + 2yj. In particular,
Vi({,2) = 2i + 4j. Observe that this vector is perpendicular to the tangent line
x + 2y = 5 to the circle x? + y? = 5 at (1, 2). This circle is the level curve of f
that passes through the point (1, 2). (See Figure 12.23.) As the following theorem
shows, this perpendicularity is not a coincidence.

_n
Y4
20 + 4§
(1,2)
x+2y=5
X
2 4+y?=5

If f(x.y) is differentiable at the point (a, b) and V£ (a, b) # 0, then Vf(a, b) is
a normal vector to the level curve of f that passes through (a, b).

PROOF Letr =r(t) = x(t)i + y(2)j be a parametrization of the level curve of f
such that x(0) = a and y(0) = b. Then for all ¢ near 0, f(x(t), y(t)) = f(a, b).
Differentiating this equation with respect to ¢ using the Chain Rule, we obtain

A, y(z)) =+ £x®,y0) d—y
] dr . .
Att = O this says that Vf(a,b) e E’ 0= 0, that is, Vf is perpendicular to the
=
tangent vector dr/dt to the level curve at (a, b).




JEFINITION n

(a.b,f(a.b))

Figure 12.24 Unit vector u
determines a line L through (a, b) in
the domain of f. The vertical plane
containing L intersects the graph of f
in a curve C whose tangent T at
(a.b. f(a, b)) has slope Dy f(a, b)

“THEOREM o
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Directional Derivatives

The first partial derivatives f](a, b) and f>(a, b) give the rates of change of f(x, y)
at (a, b) measured in the directions of the positive x- and y-axes, respectively. If we
want to know how fast f(x, y) changes value as we move through the domain of f
at (a, b) in some other direction, we require a more general directional derivative.
We can specify the direction by means of a nonzero vector. It is most convenient to
use a unit vector.

Let u = ui + vj be a unit vector, so that u> + v> = 1. The directional
derivative of f(x, y) at (a, b) in the direction of u is the rate of change of
f(x, y) with respect to distance measured at (a, b) along a ray in the direction
of u in the xy-plane. (See Figure 12.24.) This directional derivative is given

by

fla+hu,b+hv)— f(a,b)

Dufa.b) = i, ;

It is also given by

d
Dyf(a,b) = —f(a+tu,b+rv)
dt 0

if the derivative on the right side exists.

Observe that directional derivatives in directions parallel to the coordinate axes
are given directly by first partials: D;f(a, b) = fi(a.b), Djf(a,b) = fa(a,b),
D_if(a,b) = —fi(a,b), and D_jf(a,b) = — f2(a, b). The following theorem
shows how the gradient can be used to calculate any directional derivative.

Using the gradient to find directional derivatives

If f is differentiable at (a, b) and w = ui + vj is a unit vector, then the directional
derivative of f at (a, b) in the direction of u is given by

Dyf(a,b)y=uneVf(a,b).
PROOF By the Chain Rule:

d
D, f(a,b) = —f(a+tu,b+ tv)
dt 10

=ufi(a,b)+ vfr(a,b) =ue Vf(a,b).

We already know that having partial derivatives at a point does not imply that a
function is continuous there, let alone that it is differentiable. The same can be
said about directional derivatives. It is possible for a function to have a directional
derivative in every direction at a given point and still not be continuous at that point.
See Exercise 37 below for an example of such a function.
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Given any nonzero vector v, we can always obtain a unit vector in the same
direction by dividing v by its length. The directional derivative of f at (a, b) in the
direction of v is therefore given by

Dy f(a, b) = %' o Vf(a,b).

Find the rate of change of f(x,y) = y* + 2xy® + x*y? at (0, 1)
measured in each of the following directions:

(@ i+2j, dj—2i, (¢)3i, (di+].
Solution We calculate

Vix,y) = @2y + 2xyD)i+ (4y® + 6xy* 4+ 2x%y)j,
V£(0, 1) = 2i + 4j.

(a) The directional derivative of f at (0, 1) in the direction of i + 2j is

i+2j 248
e 2i+4j) = —— =24/5.
i + 2ji ! V5

Observe that i + 2j points in the same direction as V£ (0, 1) so the directional
derivative is positive and equal to the length of V£(0, 1).

(b) The directional derivative of f at (0, 1) in the direction of j — 2i is

_2i4j . —4+4
——— e 2i+4)) = =
| —2i+j N

Since j — 2i is perpendicular to V£ (0, 1), it is tangent to the level curve of f
through (0, 1), so the directional derivative in that direction is zero.

0.

(c) The directional derivative of f at (0, 1) in the direction of 3i is
ie(2i+4j) =2.

As noted previously, the directional derivative of f in the direction of the
positive x-axis is just f;(0, 1).
(d) The directional derivative of f at (0, 1) in the direction of i + j is

i+j . . 2+4
— -~ e i+4j) = —— =342
i+l V2

If we move along the surface z = f(x, y) through the point (0,1,1) in a
direction making horizontal angles of 45° with the positive directions of the x-
and y-axes, we would be rising at a rate of 34/2 vertical units per horizontal

unit moved.
||

Remark A direction in the plane can be specified by a polar angle. The direction
making angle ¢ with the positive direction of the x-axis corresponds to the unit
vector (see Figure 12.25)

Uy = cos @i + sin @j,




(cos ¢, sin¢)

vector Uy

¢

Figure 12.25 The unit vector
specified by a polar angle ¢
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so the directional derivative of f at (x, y) in that direction is
Dy f(x,y) =Dy, f(x,y) =00 Vf(x,y) = filx,y)cos¢+ fo(x, y)sing.

Note the use of the symbol D, f (x, y) to denote a derivative of f with respect to
distance measured in the direction ¢.

As observed in the previous example, Theorem 7 provides a useful interpreta-
tion for the gradient vector. For any unit vector u we have

Dyf(a,b)=ueVf(a,b)=|Vf(a,b)| cosb,

where 0 is the angle between the vectors u and Vf(a, b). Since cosé only takes
on values between —1 and 1, D, f (a, b) only takes on values between —|V f(a, b)|
and |V f (a, b)|. Moreover, Dy f (a, b) = —|V f(a, b)| if and only if u points in the
opposite direction to V£ (a, b) (so that cos® = —1),and D, f(a,b) = |V f(a, b)|
if and only if u points in the same direction as Vf(a, b) (so that cos® = 1). The
directional derivative is zero in the direction 6 = m/2; this is the direction of the
(tangent line to the) level curve of f through (a, b).

We summarize these properties of the gradient as follows:

Geometric properties of the gradient vector

(i) At{a,b), f (x,y)increases most rapidly in the direction of the gradi-
ent vector V£ (a, b). The maximum rate of increase is |V f(a, b)|.
(i1) At{a,b), f{x,y)decreases mostrapidly in the directionof —Vf (a, b).
The maximum rate of decrease is |V f (a, b)|.
(iii) -The rate of change of f(x;y)at (g, b) is zero in directions tangent to
the level curve of f-that passes through (a, b).

Look again at the topographic map in Figure 12.6 in Section 12.1. The streams on
the map flow in the direction of steepest descent, that is, in the direction of —Vf,
where f measures the elevation of land. The streams therefore cross the contours
(the level curves of f) at right angles. Like the stream, an experienced skier might
choose a downhill path close to the direction of the negative gradient, while a novice
skier would prefer to stay closer to the level curves.

IESTEY  The temperature at position (x, y) in a region of the xy-plane is
T°C, where
T(x,y)=x%e".

In what direction at the point (2, 1) does the temperature increase most rapidly?
What is the rate of increase of f in that direction?

Solution We have
VT (x,y) =2xei—x%e™?j,
4 4 4
VIR, D)=-i—--j=-(3Gi-}).
e e e

At (2, 1), T(x, y) increases most rapidly in the direction of the vector i — j. The
rate of increase in this direction is | VT (2, 1)| = 4+/2/e °C/unit distance.

]
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LY M A hiker is standing beside a stream on the side of a mountain,
examining her map of the region. The height of land (in metres) at any point (x, y)
is given by

20,000
34 x242y?
where x and y (in kilometres) denote the coordinates of the point on the hiker’s
map. The hiker is at the point (3, 2).

h(x,y) =

(a) What is the direction of flow of the stream at (3, 2) on the hiker’s map? How

fast is the stream descending at her location?
and showing the stream.

Solution
(a) We begin by calculating the gradient of s and its length at (3, 2):
20,000
NEEaTo
Vh(3,2) = —100(3i + 4j),
|Vh(3, 2)| = 500.

Vh(x,y) = 2xi+ 4y])),

The stream is flowing in the direction whose horizontal projection at (3, 2) is
-Vh(3, 2), that is, in the horizontal direction of the vector 3i 4+ 4j. The stream
is descending at a rate of 500 m/km, that is, 0.5 metres per horizontal metre
travelled.

(b) Coordinates on the map are the coordinates (x, y) in the domain of the height
function 4. We can find an equation of the path of the stream on a map of the
region by setting up a differential equation for a change of position along the
path. If the vector dr = dx i+ dy j is tangent to the path of the stream at point
(x, y) on the map, then dr is parallel to Vh(x, y). Hence, the components of
these two vectors are proportional:

dx dy dy 2dx
— == or == —.
2x 4y y X
Integrating both sides of this equation, we getlny = 2Inx +InC,or y = Cx?.

Since the path of the stream passes through (3, 2), we have C = 2/9 and the
equation is 9y = 2x2.

(c) Suppose the hiker moves away from (3, 2) in the direction of the unit vector u.
She will be ascending at an inclination of 15° if the directional derivative of
in the direction of u is 1,000 tan 15° a2 268. (The 1,000 compensates for the
fact that the vertical units are metres while the horizontal units are kilometres.)
If 6 is the angle between u and the upstream direction, then

500 cos8 = |Vh(3,2)| cos® = Dyh(3,2) ~ 268.

Hence cosv =~ u.o30and v ~ 37.0°. SNE SNOULA seL vuL L a dliecuon aking
a horizontal angle of about 58° with the upstream direction.

(d) A suitable sketch of the map is given in Figure 12.26.




Figure 12.26 The hiker’s map.
Unlike most mountains, this one has
perfectly elliptical contours
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stream

=

=2

G

K_J/ *

(3.2)

m Find the second directional derivative of f(x, y) in the direction

making angle ¢ with the positive x-axis.
Solution As observed earlier, the first directional derivative is
Dy f(x,y) = (cospi +singj) e Vf(x, y) = fi(x,y)cos¢ + fo(x,y)sing.
The second directional derivative is therefore
D} f(x,y) =Dy (Dy f (x, y))
—(cos ¢i + sin Bj) o V(fl (x,y)cosé + fr(x, ) sin¢)
=(fu(x, y)cosd + foi(x, y) sin¢>) cos ¢

+ (fialx, ) cosg + fo(x, ) sin@) sin
=fu(x, y) cos’ ¢ + 2 fia(x, y) cospsing + fon(x, y)sin’ ¢.
Note that if ¢ = 0 or ¢ = 7 (so the directional derivative is in a direction parallel

to the x-axis) then Déf(x, ¥) = fi1(x, y). Similarly, Dif(x, y) = folx,y)if
¢ =m/20r3n/2.

Rates Perceived by a Moving Observer

Suppose that an observer is moving around in the xy-plane measuring the value of
a function f (x, y) defined in the plane as he passes through each point (x, y). (For
instance, f(x, y) mightbe the temperature at (x, y).) If the observer is moving with
velocity v at the instant when he passes through the point (@, ), how fast would he
observe f(x, y) to be changing at that moment?

At the moment in question the observer is moving in the direction of the unit
vector v/|v]. The rate of change of f(x, y) at (a, b) in that direction is

Dy f(a, b) = % o Vf(a.b)
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measured in units of f per unit distance in the xy-plane. To convert this rate to
units of f per unit time, we must multiply by the speed of the observer, |v| units of
distance per unit time. Thus, the time rate of change of f(x, y) as measured by the
observer passing through (a, b} is

v

\ ﬁ eVf(a,b)=veVf(a,b).

v
It is natural to extend our use of the symbol Dy f (a, b) to represent this rate even
though v is not (necessarily) a unit vector. Thus

The rate of change of f(x, y) at (a, b) as measured by an observer moving
through (¢, b) with velocity v is

D.f(a,b)y=veVfla,b)
units of f per unit time.

If the hiker in Example 4 moves away from (3, 2) with horizontal velocity v = —i—j
km/h, then she will be rising at a rate of

o LN T
Ve Vh(3,2)=(—i—j)e <——16(31+4,])) = 1 kmvh.

As defined here, Dy f is the spatial component of the derivative of f following the
motion. See Example 6 in Section 12.5. The rate of change of the reading on the
moving thermometer in that example can be expressed as

dT ol
ST T ke 3 _!
pr DiT(x,v.z,t)+ Py

where v is the velocity of the moving thermometer and D, T = ve VT'. The gradient
is being taken with respect to the three spatial variables only. (See below for the
gradient in 3-space.)

The Gradient in Three and More Dimensions

By analogy with the two-dimensional case, a function f(xy, x2, ..., x,) of n vari-
ables possessing first partial derivatives has gradient given by
B B B
Vf(x19-x27'~-7xn):—fe1+_‘f—e2+"'+ fel’l’
0x1 0x3 0x,

where e; is the unit vector from the origin to the unit point on the jth coordinate
axis. In particular, for a function of three variables,

af af . of
v/ )= i 2j4 Lk
flx, ¥y, 2) i + 8y"+ azk

The level surface of f(x, y, z) passing through (a, b, c) has a tangent plane there if
f is differentiable at (a, b, ¢) and Vf(a, b, c) £ 0.

For functions of any number of variables, the vector Vf(Py) is normal to the
“level surface” of f passing through the point Py (i.e., the (hyper)surface with
equation f(xy,...,x,) = f(Py)), and, if f is differentiable at Py, the rate of
change of f at P, in the direction of the unit vector u is given by u e Vf(F).
Equations of tangent planes to surfaces in 3-space can be found easily with the aid
of gradients.




Figure 12.27

(a) The tangent plane to
2 4y242=6at(1,-1,2)

(b) The gradient of f(x, y) —z at
(a, b, f(a, b)) is normal to the
tangent plane to z = f(x, y) at
that point

Make sure you understand the
difference between the graph of a
function and a level curve or level
surface of that function. (See the
discussion following this example.)
Here. the surface - = f(x, y) is the
graph of the function f, but it is
also a level surface of a different
function g.
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S ETGIEE Let f(x,y,2) = x* 4+ 2+ z2.

(a) Find Vf(x, y,z)and Vf(1, —1,2).

(b) Find an equation of the tangent plane to the sphere x> 4+ y 4 z> = 6 at the
point (1, —1, 2).

(¢) What is the maximum rate of increase of f at (1, —1,2)?

(d) What is the rate of change with respect to distance of f at (1, —1, 2) measured
in the direction from that point toward the point (3, 1, 1)?

Solution

(@) Vf(x,y,2) =2xi+2yj+2zk,s0 Vf(l, -1,2) =2i - 2j+4k.

(b) The required tangent plane has Vf (1, —1, 2) as normal. (See Figure 12.27(a).)
Therefore, its equation is given by 2(x — 1) — 2(y+ 1) + 4(z — 2) = 0 or, more
simply, x —y 4+ 2z = 6.

(c) The maximum rate of increase of f at (1, —1,2)is [Vf(1, —1,2)| = 26,
and it occurs in the direction of the vector i — j 4 2k.

(d) The direction from (1, —1, 2) toward (3, 1, 1) is specified by 2i + 2j — k. The
rate of change of f with respect to distance in this direction is

2i42j—k 4—4-4 4
S it = D
Jiragr AT 3 3

that is, f decreases at rate 4/3 of a unit per horizontal unit moved.

2i-2j+4k

(a) (b)

m The graph of a function f(x,y) of two variables is the graph
of the equation z = f(x,y) in 3-space. This surface is also the level surface
g(x, y, z) = 0 of the 3-variable function

g(x’va)=f(X,y)—Z.

If f is differentiable at (a, b) and ¢ = f(a, b), then g is differentiable at (a, b, ¢),
and

Vg(a,b,c) = fila,b)i+ fola,b)j—k
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&

is normal to g(x,y,z) = 0 at (a, b, c). (Note that Vg(a, b, ¢) # 0, since its z
component is —1.) It follows that the graph of f has nonvertical tangent plane at
(a, b) given by

fila,b)(x —a) + fala,b)(y —b) — (2 —¢) =0,
or

z= f(a,b)+ fila,b)(x —a) + fala, b)(y — b).

(See Figure 12.27(b).) This result was obtained by a different argument in Sec-
tion 12.3.

N |

Students sometimes confuse graphs of functions with level curves or surfaces of
those functions. In the above example we are talking about a level surface of the
function g(x, y, z) that happens to coincide with the graph of a different func-
tion, f(x, y). Do not confuse that surface with the graph of g, which is a three-
dimensional hypersurface in 4-space having equation w = g(x, y, z). Similarly, do
not confuse the tangent plane to the graph of f(x, y) (i.e., the plane obtained in the
above example) with the tangent line to the level curve of f(x, y) passing through
(a, b) and lying in the xy-plane. This line has an equation involving only x and y,
namely, fi(a, b)(x —a) + fr(a,b)(y —b) =0.

(S ETNTER M Find a vector tangent to the curve of intersection of the two surfaces

z=x*—y? and xyz+30=0

at the point (-3, 2, 5).

Solution The coordinates of the given point satisfy the equations of both surfaces
so the point lies on the curve of intersection of the two surfaces. A vector tangent
to this curve at that point will be perpendicular to the normals to both surfaces, that
is, to the vectors

n = Vxi—y*—2)

=2xi—2yj—k

= —6i —4j — k,
(=3.2,5) (=3,2,5)
n; = V(xyz + 30) = (yzi + xzj + xyk)
(-3,2,5)

= 10i — 15j — 6k.
(-3.2.5)

For the tangent vector T we can therefore use the cross product of these normals:

i § Kk
T=n xm=|-6 -4 —1|=09i—46j+ 130k.
10 -15 —6

_m

Remark Maple’s linalg package defines a function grad that takes a pair of
arguments, an expression and a vector of variables, and produces the gradient
vector of the expression with respect to those variables:

> I = (x,v,2) —> x*exp(y)/z;
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xe*
f:: (X,y,z)_) 7

> with(linalg): G := grad(f(x,v,z), [X,v,2]);

Getting the value of this gradient at a particular point, say (2, 0, 1), is surprisingly
complicated. We must use the Maple evaluation function, eval, on G, then use the
substitution function, subs, to substitute in the values for x, y, and z, and finally
simplify the result.

> simplify(subs(x=2, y=0, z=1, eval(G)));
[172’_2]

There is an easier way to accomplish this. We can define a gradient operator,
let us call it Grad3, so that it acts on a function of three variables to produce a
3-vector-valued function.

> Grad3 :=u -> [D[1](u), D[2](u), D[3] (u)];
Grad3 :=u — [D(u), Dy(u), D3(u)]
Note that Grad3 takes a function as its argument, not an expression.
> Grad3(f)(2,0,1);
[1,2,-2]

To force evaluation of the result in decimal form, you can use evalf or just put
decimal points in the coordinates:

> Grad3(f)(1,1,1); Grad3(£f)(1.0,1.0,1.0);
[e, e, —e]

[2.718281828, 2.718281828, —2.718281828]

The definition of the gradient operator, Grad3, makes no use of the Maple linalg
package and can be extended to apply to functions of different numbers of vari-
ables. We will use this approach again in Chapter 16 to define divergence and curl
operators.

In Exercises 1-6, find:

5. f(x,y) =In(x + y?) at (1, =2)

(a) the gradient of the given function at the point indicated, 6. flx,y) = /1 +xy2 at (2, —2)

(b) an eq}lation of the' plane tangent to the graph of the gi.ven In Exercises 7-9, find an equation of the tangent plane to the level
function at the point whose x and y coordinates are given, surface of the given function that passes through the given point.
and
, 7. fxoy, ) =x2y+y*+2%xat(l, -1, 1)

(¢) an equation of the straight line tangent, at the given point, to T
the level curve of the given function passing through that 8. f(x,y,2) = cos(x +2y+3z) at (E T, )
point.

L fix,y)=x>—y*at(2,—1)

2 [ y) = ’:')

X+ y

X
3. flx,y)=———at(1,2
Jx,y) x2+y2a( )

4. f(x.y)=e" at (2,0)

Lt (1, 1)

9. flx,y,2) = ye_"2 sinz at (0, 1, 7/3)
In Exercises 10-13, find the rate of change of the given function
at the given point in the specified direction.
10. f(x,y) = 3x — 4y at (0, 2) in the direction of the vector
—2i
11. f(x,y) = x2y at (—1, —1) in the direction of the vector
i+2j
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22,
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at (0, 0) in the direction of the vector i — j

flx.y)=

X
I+y
f(x.y) = x% + y? at (1, —2) in the direction making a
(positive) angle of 60° with the positive x-axis

Let f(x.ry) = In{r| where r = xi + yj. Show that

Let f(x,y,z) = |r{7", where r = xi + yj + zk. Show that
~nr

Show that, in terms of polar coordinates (r, 8) (where
x =rcos@ and y = rsin8), the gradient of a function
f(r.8) is given by

_of,

19f .
_ W
ar

vf - ,
] r a6

where T is a unit vector in the direction of the position vector
r = xi+ yj,and 8 is a unit vector at right angles to T in the
direction of increasing 6.

In what directions at the point (2, 0) does the function
f(x,y) = xy have rate of change —1? Are there directions
in which the rate is —3? How about —2?

In what directions at the point (a, b, ¢) does the function
Fx.yv. ) = x2 4+ y2 — zZincrease at half of its maximal
rate at that point?

Find V f(a, b) for the differentiable function f(x, y) given
the directional derivatives

Diiysyvafia by = 3v2and D(zi_gy s f(a, b) = 5.

If f(x. v) is differentiable at (a, b), what condition should
angles ¢ and ¢; satisfy in order that the gradient V£ (a, b)
can be determined from the values of the directional
derivatives Dy, f(a. b) and Dy, f(a, b)?

The temperature 7 (x, y) at points of the xy-plane is given

by T(x.y) = x2 — 2y

(a) Draw a contour diagram for 7' showing some isotherms
(curves of constant temperature).

(by In what direction should an ant at position (2, —1) move
if it wishes to cool off as quickly as possible?

(c) If the ant moves in that direction at speed k (units
distance per unit time), at what rate does it experience
the decrease of temperature?

(d) At what rate would the ant experience the decrease of
temperature if it moved from (2, —1) at speed & in the
direction of the vector —i — 2j?

(e) Along what curve through (2, —1) should the ant move

in order to continue to experience maximum rate of
cooling?

Find an equation of the curve in the xy-plane that passes
through the point (1, 1) and intersects all level curves of the
function f(x, y) = x* + y? at right angles.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

* 34,

x 35,

36.

Find an equation of the curve in the xy-plane that passes
through the point (2, —1) and that intersects every curve
with equation of the form x2y3 = K at right angles.

Find the second directional derivative of e~ =" at the point
(a, b) # (0, 0) in the direction directly away from the
origin.

Find the second directional derivative of f(x, y, z) = xyz at
(2,3, 1) in the direction of the vectori — j — k.

Find a vector tangent to the curve of intersection of the two
cylinders x2 + y? = 2 and y? 4 z2 = 2 at the point

1, -1, D.

Repeat Exercise 26 for the surfaces x + y +z = 6 and

x2 + y2 + z2 = 14 and the point (1, 2, 3).

The temperature in 3-space is given by
T(x,y.2) = x> —y> + 22 +x2%,

At time t = 0 a fly passes through the point (1, 1, 2), flying

along the curve of intersection of the surfaces z = 3x% — y2
and 2x2 + 2y2 — z2 = 0. If the fly’s speed is 7, what rate of
temperature change does it experience at t = 0?

State and prove a version of Theorem 6 for a function of
three variables.

What is the level surface of f(x, y, z) = cos(x + 2y + 32)
that passes through (7, 7, )7 What is the tangent plane to
that level surface at that point? (Compare this exercise with
Exercise 8 above.)

If V£ (x, y) = 0 throughout the disk x> + y? < r2, prove
that f(x, y) is constant throughout the disk.

Theorem 6 implies that the level curve of f(x, y) passing
through (a, b) is smooth (has a tangent line) at (a, b)
provided f is differentiable at (a, b) and satisfies

Vif(a, b) # 0. Show that the level curve need not be
smooth at (a, b) if Vf(a, b) = 0. (Hint: consider
fOy) =y —x%at(0,0).)

If v is a nonzero vector, express Dy (Dy f) in terms of the
components of v and the second partials of f. What is the
interpretation of this quantity for a moving observer?

An observer moves so that his position, velocity, and
acceleration at time ¢ are given by

r(t) =x@)i+ y()j+ z(Hk, v(r) = dr/dt, and

a(t) = dv/dt. If the temperature in the vicinity of the
observer depends only on position, T = T (x, y, 7), express
the second time derivative of temperature as measured by
the observer in terms of Dy and D,.

Repeat Exercise 34 but with 7 depending explicitly on time
as well as position: T = T(x, y, z, 1).

M_ if (x, y) # (0, 0)
Letf(x,y):{ /x2+y2’ » Y ,
0, if (x, y) = (0, 0).

(a) Calculate V£(0, 0).




(b) Use the definition of directional derivative to calculate
D, £ (0, 0), where u = (i + j)/v/2.
(b) Is f(x, y) differentiable at (0, 0)? Why?
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continuous there. Even if a function has directional
derivatives in all directions at a point, it may not be
continuous at that point.
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38. Check that the Maple definition
> Grad := proc(u,n)
options operator, arrow;

37. Let f(x, y) = (2)x2y/(x4 + yz), if (x, y) # (0, 0)

if (x, y) = (0, 0).
Use the definition of directional derivative as a limit
(Definition 7) to show that D, f (0, 0) exists for every unit
vector u = ui + vj in the plane. Specifically, show that
Dy f(0,0) = 0if v =0, and D, £(0,0) = 2u?/v if v # 0.
However, as was shown in Example 4 in Section 12.2,
f(x, y) has no limit as (x, y) — (0, 0), so it is not

local i;

[seg(D[1]{(u),1i=1..n)] end;
suitably defines a gradient operator for functions of n
variables. Test it by defining a function
F(x,y, 2, 1) = xy*z3+* and calculating
Grad(f,4)(1,1,1,1).

When we study the calculus of functions of one variable, we encounter examples
of functions that are defined implicitly as solutions of equations in two variables.
Suppose, for example, that F(x, y) = 0is such an equation. Suppose that the point
(a, b) satisfies the equation and that F has continuous first partial derivatives (and
so is differentiable) at all points near (a, b). Can the equation be solved for y as a
function of x near (a, b)? That is, does there exist a function y(x) defined in some
interval I =Ja — h, a + h[ (where h > 0) satisfying y(a) = b and such that

F (x, y(x)) =0
holds for all x in the interval I? If there is such a function y(x), we can try to find

its derivative at x = g by differentiating the equation F(x, y) = O implicitly with
respect to x, and evaluating the result at (a, b):

d
Fite,y) + B, ) 2 =0,
dx

so that
V4
dy Fi(a, b) .
e =—_—" " ded Fy(a,b 0.
. x| Fa.b) provide a(a,b) #

Observe, however, that the condition F,(a, b) # 0 required for the calculation of

y'(a) will itself guarantee that the solution y (x) exists. This condition, together with

the differentiability of F(x, y) near (a, b), implies that the level curve F(x, y) =

F(x,y) =0 F(a, b) has nonvertical tangent lines near (a, b), so some part of the level curve

— near (a, b) must be the graph of a function of x. (See Figure 12.28; the part of

* the curve F(x,y) = 0 in the shaded disk centred at P, = (a, b) is the graph of
a function y(x) because vertical lines meet that part of the curve only once. The
only points on the curve where a disk with that property cannot be drawn are the
three points V;, V5, and V3 where the curve has a vertical tangent, that is, where
F>(x,y) = 0.) This is a special case of the Implicit Function Theorem, which we
will state more generally later in this section.

Figure 12.28
F(x, v) = 0can be solved for y as a

The equation

function of x near Py or near any other
point except the three points where the
curve has a vertical tangent
A similar situation holds for equations involving several variables. We can, for
example, ask whether the equation

F(x,y,2)=0
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defines z as a function of x and y (say, z = z{(x, y)) near some point Py with
coordinates (xg, yg, Zo) satisfying the equation. If so, and if F has continuous first
partials near Py, then the partial derivatives of z can be found at (xg, yo) by implicit
differentiation of the equation F (x, y, z) = 0 with respect to x and y:

9z 0z
FI(X,y,Z)—I-Fg(x,y,z)a—x:O and Fz(x,y,z)+F3(x,y,z)5;=0,

so that
9z __ Fi(x0, yo. 20) and (4 _ Fa(xo, yo, 20)
dx (x0, y0) F3(xo, Yo, 20) 8y (x0,¥0) F3(xo, Yo, 20) '

provided F3(xp, Yo, 20) # 0. Since Fj is the z component of the gradient of F, this
condition implies that the level surface of F through Py does not have a horizontal
normal vector, so it is not vertical (i.e., it is not parallel to the z-axis). Therefore,
part of the surface near Py must indeed be the graph of a function z = z(x, y).
Similarly, F(x, y,z) = 0 can be solved for x as a function of y and z near points
where F; # 0 and for y = y(x, z) near points where F, # 0.

m Near what points on the sphere x* + y* + z* = 1 can the equation
of the sphere be solved for z as a function of x and y? Find dz/dx and 9z/dy at
such points.

Solution The sphere is the level surface F(x, y, z) = 0 of the function
Fx,y,2)=x>+y*"+2"— 1.

The above equation can be solved for z = z(x, y) near Py = (xg, yo, Zo), provided
that Py is not on the equator of the sphere, that is, the circle x> + y2 = 1,z = 0.
The equator consists of those points that satisfy Fz(x, y,z) = 0. If Py is not on
the equator, then it is on either the upper or the lower hemisphere. The upper
hemisphere has equation z = z(x, y) = /1 — x% — y2, and the lower hemisphere

has equation z = z(x, y) = —/1 — x2 — y2,

If z # 0, we can calculate the partial derivatives of the solution z = z(x, y) by
implicitly differentiating the equation of the sphere: x? + y2 + z2 = 1:

a9z 0z x
2X+2—:0’ SO — =
Zax 0x z

0 b
2y+21—z=0, SO _EZ_X_
dy ay z

Systems of Equations

Experience with linear equations shows us that systems of such equations can
generally be solved for as many variables as there are equations in the system. We
would expect, therefore, that a pair of equations in several variables might determine
two of those variables as functions of the remaining ones. For instance, we might
expect the equations

Fx,v,z,w) =0
Gx,y,z,w) =0
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to possess, near some point that satisfies them, solutions of one or more of the forms

x = x(z, w) x=x(y, w) {x:x(y,z)
y=y(z, w), z=z(y, w), w = w(y, z),
y=y(x, w) y=yx,2) z=12z(x,y)
z = z(x, w), w = w(x, z), w = w(x,y).

Where such solutions exist, we should be able to differentiate the given system of
equations implicitly to find partial derivatives of the solutions.

If you are given a single equation F(x, y,z) = 0 and asked to find dx/oz,
you would understand that x is intended to be a function of the remaining variables
y and z, so there would be no chance of misinterpreting which variable is to be
held constant in calculating the partial derivative. Suppose, however, that you are
asked to calculate 0x/dz given the system F(x,y,z,w) =0, G(x,y,z,w) = 0.
The question implies that x is one of the dependent variables and z is one of the
independent variables, but does not imply which of y and w is the other dependent
variable and which is the other independent variable. In short, which of the situations

x =x(z,w) x=x(y,2)
{y=yww) and {w=w@J)

are we dealing with? As it stands, the question is ambiguous. To avoid this
ambiguity we can specify in the notation for the partial derivative which variable
is to be regarded as the other independent variable and therefore held fixed during
the differentiation. Thus,

x=x(z,w)
y=1y(, w),
x=x(y,2)
w = w(y, 7).

ax T : .
(——) implies the interpretation {
9z /),

ax . . ; .
(——) implies the interpretation {
9z /,

m Given the equations F(x,y,z,w) = 0 and G(x,y,z, w) = 0,

where F and G have continuous first partial derivatives, calculate (3x/3z7),,.

Solution We differentiate the two equations with respect to z, regarding x and y
as functions of 7 and w, and holding w fixed:

ax dy
F—+F/H=—+F=0

9z a9z

dax

9
2 16,2 +6,=0
0z

9z
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(Note that the terms F4(dw/0dz) and G4(dw/dz) are not present because w and z
are independent variables, and w is being held fixed during the differentiation.) The
pair of equations above is linear in dx/9z and dy/dz. Eliminating dy/0z (or using
Cramer’s Rule, Theorem 6 of Section 10.6), we obtain

x\  FGy—FG;
az w_ Fle—FzGl.

In the light of the examples considered above, you should not be too surprised
to learn that the nonvanishing of the denominator F)G, — F>G; at some point
Py = (x0, Y0, 20, wo) satisfying the system F = 0, G = 0 is sufficient to guarantee
that the system does indeed have a solution of the form x = x(z, w), y = y(z, w)
near Py. We will not, however, attempt to prove this fact here.

-

m Let x, y, u, and v be related by the equations

u:)c2+xy—y2
v =2xy+ y?

Find (a) (3x/du), and (b) (dx/0u), at the point where x = 2 and y = —1.

Solution

(a) Tocalculate (0x/du), we regard x and y as functions of u and vand differentiate
the given equations with respect to u, holding v constant:

au 9x dy
l=—=(2 — —2y)—

o (X+y)au+(x y)au

v ox ay
0= —=2y— 2 2y)—

u y8u+(x+ y)au

Atx =2,y = —1 we have

ax dy
1=3—+4—
du + ou
dox dy
0=-2—+2—-.
du + ou

Eliminating dy/du leads to the result (3x /du), = 1/7.
(b) Tocalculate (dx/3du), we regard x and v as functions of y and u and differentiate
the given equations with respect to u, holding y constant:

du ox Jv ox
1l=—=(2 -, —_— =2y
Ju (x+y)8u ou yau

Atx =2, y = —1 the first equation immediately gives (dx/du), = 1/3.

_u

It often happens that the independent variables in a problem are either clear from
the context or can be chosen at the outset. In either case, ambiguity is not likely to
occur, and we can safely omit subscripts showing which variables are being held
constant. The following example is taken from the thermodynamics of an ideal gas.
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[SETTILY: M (Reversible changes in an ideal gas) The state of a closed system
containing n moles of an ideal gas is characterized by three state variables—
pressure, volume, and temperature (P, V, and T, respectively)—which satisfy the
equation of state for an ideal gas:

PV =nRT,

where R is a universal constant. This equation can be regarded as defining one of
the three variables as a function of the other two. The internal energy, E, and the
entropy, S, of the system are thermodynamic quantities that depend on the state
variables and hence may be expressed as functions of any two of P, V, and T. Let
us choose V and T for the independent variables and so write £ = FE(V, T) and
S = S(V,T). For reversible processes in the system, the first and second laws
of thermodynamics imply that infinitesimal changes in these quantities satisfy the
differential equation

TdS=dE+ PdV.

Deduce that, for such processes, E is independent of V and depends only on the
temperature 7.

Solution We calculate the differentials d.S and d E and substitute them into the
differential equation to obtain

T 05 dV+asdT = 8EdV+aEdT+PdV
v aT T av aT '

Divide by T, substitute nR/V for P/T (from the equation of state), and collect
coefficients of dV and dT on opposite sides of the equation to get

8 19E nR 1 0
95 19E nRN ., _(LOE 353 p
v Tov Vv ToT  oT

Since dV and dT are independent variables, both coefficients must vanish. Hence

as 190E nR

Vo T TV
aS_ 10E
aT T 8T’

Now differentiate the first of these equations with respect to 7' and the second with
respect to V. Using equality of mixed partials for both S and £, we obtain the
desired result:

i<18E+nR 9% 9% 9 (19E
AT\T OV V) 8TdV — aVvVaT VAT aT
—19E 1 3%E 1 9%E

T23v T T30V ~ Tavar

—18E_0
T238vV

It follows that 9 E/9V = 0, so E is independent of V.
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Jacobian Determinants

Partial derivatives obtained by implicit differentiation of systems of equations are
fractions, the numerators and denominators of which are conveniently expressed in
terms of certain determinants called Jacobians.

The Jacobian determinant (or simply the Jacobian) of the two functions,
u = u(x,y) and v = v(x, y), with respect to two variables, x and y, is the

determinant
du du
(u,v) |dx dy
d(x,y) |Bv v
dx 9y

Similarly, the Jacobian of two functions, F(x, y,...) and G(x, y, ...), with
respect to the variables, x and y, is the determinant

oF OF
B(F,G)_ dx 8y _ F1 F2
dx,y) |3G aG _‘Gl G|’
ax  ay

The definition above can be extended in the obvious way to give the Jacobian of n
functions (or variables) with respect to n variables. For example, the Jacobian of
three functions, F, G, and H, with respect to three variables, x, vy, and z, is the
determinant

FF B F
oF,G H

—(-—)z G G, Gs.
0.y |m mom

Jacobians are the determinants of the square Jacobian matrices corresponding to
transformations of R” to R* as discussed briefly in Section 12.6.

m In terms of Jacobians, the value of (3x/0z),,, obtained from the
system of equations

F(x,y,z,w)=0, Gx,y,z,w)=0

in Example 2 can be expressed in the form

A(F, G)
(8_x _ @y
a:), " BAF.G)

a(x,y)

Observe the pattern here. The denominator is the Jacobian of F and G with respect
to the two dependent variables, x and y. The numerator is the same Jacobian except
that the dependent variable x is replaced by the independent variable z.

_u
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The pattern observed above is general. We state it formally in the Implicit Function
Theorem below.

The Implicit Function Theorem

The Implicit Function Theorem guarantees that systems of equations can be solved
for certain variables as functions of other variables under certain circumstances,
and provides formulas for the partial derivatives of the solution functions. Before
stating it, we consider a simple illustrative example.

S ETNNR Consider the system of linear equations

Fx,y,s,t) =aux+byy+cis+dit+e =0
Gx,y,s,ty=ax +byy+cas +dot + e, =0.

This system can be written in matrix form:
b s 0
A(y) +C(t> +&= <0>,
where
A=a1b1, C:Cldl,andé’:el.
as bz C2 dz [

The equations can be solved for x and y as functions of s and ¢ provided det(.4)+ 0,
for this implies the existence of the inverse matrix Al (Theorem 4 of Section 10.6),

) e

Observe that det(4) = 3(F, G)/d(x, y), so the nonvanishing of this Jacobian
guarantees that the equations can be solved for x and y.

]

The Implicit Function Theorem
Consider a system of n equations in n 4 m variables,

Foy(xi, X2, .oy X, Y1, Y25 2o, Yn) = 0

F(Z)(X],xz, s Xms y]7 y27 Tt }’n) = O

Foy(x1, X2, oo o, X, Y1, Y20 -+ -, Yu) = 0,
and apoint Py = (a1, a2, ..., dm, b1, b2, . . ., b,) that satisfies the system. Suppose
each of the functions F{; has continuous first partial derivatives with respect to each
of the variables x; and y,, ( = 1,...,n, j=1,...,m, k = 1,...,n), near Py.

Finally, suppose that

a(Fay, Foy, ..., Finy)
0L, ¥2, .-+, ) p,

#0.
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Then the system can be solved for y1, ¥2, ..., y, as functions of xy, x2, ..., x» Dear
P. That ic there axist finctions
¢>j(a1,...,am}‘=zf)j, (J=1,...,n),

and such that the equations

F(l)(xl,...,xm,qbl(xl,...,xm),...,¢n(x1,...,xm)) =0,

F(2)<x1,...,xm,¢1(x1,...,xm),...,(pn(xl,...,xm)> =0,

F(n)<x1,...,xm,¢1(x1,...,xm),...,¢,,(x1,...,xm)> =0,

hold for all (xy, ..., x,;) sufficiently near (ay, ..., an).
Moreover,

(Fu), Foy, - -+, Fimy)
9?1..(%) R [T
dx; dx; ESTERN T TR IO a(Fyy, Foy, ., Fiwy)
a(yly"',yi7‘-~’yn)

Remark The formula for the partial derivatives is a consequence of Cramer’s Rule
(Theorem 6 of Section 10.6) applied to the n linear equations in the # unknowns

9y1/0x;, ..., 0y,/0x; obtained by differentiating each of the equations in the given
system with respect to x;.

m Show that the system

xy? +xzu+ yv* =3
Xyz +2xv —utv? =2

can be solved for (u, v) as a (vector) function of (x, y, z) near the point Py where
(x,v,z,u,v) = (1,1,1,1, 1), and find the value of dv/dy for the solution at
(x,y,2) = (1,1, 1).

— yy2 2 _
Solution Let{F(x,y,z,u,v)_xy +xzutyv- —3

. Th
G(x,y. 7, u,0) = Xyz + 200 —u2? =2 0
8(F, G) _ XZ 2yv B 1 2 _4
3(u, v) Po_ —2uv? 2x —2uPvllp |2 O

Since this Jacobian is not zero, the Implicit Function Theorem assures us that the
given equations can be solved for u and v as functions of x, y, and z, that is, for
(u,v) =f£(x, y, 7). Since
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OF.G)| _ | xz  2xy+0?|| _| 1 3|_,
a( T —2uv? 3 =2 1]
u,y) P uv x°z Py
we have
a(F, G)
(3_”) __dwy» | _ 7
o). T TWFRG |, T 4
au, v)

_m

Remark 1If all we wanted in this example was to calculate dv/9y, it would have
been easier to use the technique of Example 3 and differentiate the given equations
directly with respect to y, holding x and z fixed.

FENLILKE D If the equations x = u? + v? and y = uv are solved for u and v in
terms of x and y, find, where possible,

ou ou ov ov
—, —, —, and —.
ox ay dox dy
o(u, a(x, . . .
Hence, show that , v) =1 x, y) , provided the denominator is not zero.
3(x,y) a(u, v)

Solution The given equations can be rewritten in the form
F(u,v,x,y) =+ —x=0
Gu,v,x,y) =uv—y=0.

Let

_A(F,G)
oA, v)

2u 2v
voou

_0x,y)

=2W? =) = T

If u? # v, then J # 0 and we can calculate the required partial derivatives:

du _ 13(F.G)  1|-1 2v u
ax T At  J|0 u|T 20— ?)
ou  1a(F,G) 110 2o —2v
ay T a(,v  J|-1 ul|T 2mE_?)
av _ 1 a(F, G) _ 1120 -1 —v
ax  Jaw,x)  J|v 0| 22—
w_ 1aF.G _ 1| 0 2u
ay  Joawy  J|v -1 =2(u2—v2)'
Thus,
a(u, v) _ 1l u —2v _ 1 1
3, y) JE|-v 2w | T 72T 7T axyy
da(u, v)
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Remark Note in the above example that du/dx # 1/(dx/0u). This should be
contrasted with the single-variable situation where, if y = f(x) and dy/dx # 0,
then x = f~'(y) and dx/dy = 1/(dy/dx). This is another reason for distinguish-
ing between “9” and “d.” It is the Jacobian rather than any single partial derivative
that takes the place of the ordinary derivative in such situations.

Remark Let us look briefly at the general case of invertible transformations from
R® to R*. Suppose that y = f(x) and z = g(y) are both functions from R"
to R whose components have continuous first partial derivatives. As shown in
Section 12.6, the Chain Rule implies that

8z 921 9zy 0z, 1 2y
0xy 0x, 9y A 0xy 0Xxy,
32, 3Zn 3zn 3z, 3¥n Y
9x] axy, ayi A 0x1 9x,

This is just the Chain Rule for the composition z = g(f(x)). It follows from
Theorem 3(b) of Section 10.6 that the determinants of these matrices satisfy a
similar equation:

0z -~ 2n) _ 9(z1---2Za) (V1" -yn)
Ay xg)  O(yreeryn) O(x1--xn)

If f is one-to-one and g is the inverse of f, then z = g(f(x)) = x, and
(zy -+ 2,)/0(x1 - - - x) = 1, the determinant of the identity matrix. Thus

(X1 xn) 1
iy B0y
xy - x)

In fact, the nonvanishing of either of these determinants is sufficient to guarantee
that f is one-to-one and has an inverse. This is a special case of the Implicit Function
Theorem.

We will encounter Jacobians again when we study transformations of coordi-
nates in multiple integrals in Chapter 14.

| Exercises 12.8

In Exerciscs 1-12, calculate the indicated derivative from the 6

given equation(s). What condition on the variables will
guarantee the existence of a solution that has the indicated
derivative? Assume that any general functions F, G, and H have
continuous first partial derivatives.

8.

d
D Fx v 2=y =0
dx

du .
— ifGx,y,z,u,v) =0
0x

3
EHFGE -2y 4 =0
dx

D it ey 4ty =2 2. X ip s 3
. —ifx xty = . — ifxy’=y—
dy Y - ay Y Tz 9. a—ltuifH(uzw,vzt,wt)zo
2 Xz a
T 3_ A< Y oo vz 2 _ a
3. a.\vlf\, + xy = 4. 8Zlfe xzlny=m 10. (3%);) ifxyuww=1landx+y+u+v=0
u

dx
5. ;—l— it x?y? 4 y22 4+ 22 4 2w —xw =0
au




11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

0

(‘—;ﬁ) ifx2+y2+2+w?=1and

(y z

X+2y+3z+4w =2

d

dfuifxzy—l—yzu—bﬁ=Oandx2+yu=1
v

2

If x = u® + v3 and v = uv — v? are solved for u and v in

terms of x and y, evaluate

du
ax' 3y’

du v dv
ax’ '

a(u, v)
ax, y)

at the point where u = 1 andv = 1.

Near what points (r, s) can the transformation

x =r242s, y:sz——Zr

be solved for r and s as functions of x and y? Calculate the
values of the first partial derivatives of the solution at the
origin.

Evaluate the Jacobian 9(x, y)/d(r, 8) for the transformation
to polar coordinates: x = r cosf, y = r sin. Near what
points (r, ) is the transformation one-to-one and therefore
invertible to give r and @ as functions of x and y?

Evaluate the Jacobian d(x, y, z)/9(p, ¢, 9), where
x = psingcos@, y = psingsing, and z = pcos ¢.

This is the transformation from Cartesian to spherical polar
coordinates in 3-space that we will consider in Section 14.6.
Near what points is the transformation one-to-one and hence
invertible to give p, ¢, and € as functions of x, y, and z?

Show that the equations

x4+ vr=3
{x3z+2y—uv:2

xu+yv—xyz=1
can be solved for x, y, and z as functions of u and v near the
point Py where (x, v, z,u,v) = (1,1, 1,1, 1), and find
(dv/ou)y at (i, v) = (1, 1).
xe¥ +uz —cosv =2
ucosy+ x2v—yz2 =1
solved for u and v as functions of x, y, and z near the point
Py where (x. v.z) = (2,0, 1) and (4, v) = (1, 0), and find
(du/dz)y v at (x,y,2) = (2,0, 1).

Find dx/dy from the system

Show that the equations { can be

Flx,y,zow) =0, Glx,y,z,w) =0, H(x,y,z,w) =0.

Given the system

F(x,y,z,u.v)=0
Gx,y,z,u,v)=0
H(x.y,z,u.v)y =0,

21.

22.

23.

24.

25.

* 26.

*27.

* 28,
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how many possible interpretations are there for dx/0y?
Evaluate them.

Given the system
F(x1,x2,...,x3) =0
G(x1,x2,...,x3) =0
H(xy,x2,...,x8) =0,

how many possible interpretations are there for the partial
dx1/0x27 Evaluate (Bxl /sz)

X4,X6YX7,XS'

If F(x, y, z) = 0 determines z as a function of x and y,
calculate 92z/9x2, 8%z/0x3y, and 92z/8y? in terms of the
partial derivatives of F.

Ifx=u+v,y=uv,andz =u®+ v definezasa
function of x and y, find 9z/9x, 9z/dy, and 827/0xdy.

A certain gas satisfies the law pV =T — —

where p = pressure, V = volume, and T = temperature.
(a) Calculate 3T /dp and dT/9V at the point where
p=V=1land T =2.

(b) If measurements of p and V yield the values
p =1+£0.001 and V = 1 £0.002, find the approximate
maximum error in the calculated value 7 = 2.

0 B 9z
If F(x, y, z) = 0, show that Nl a4 o
ay J \9z ) \dx J

Derive analogous results for F(x, y, z, #) = 0 and for
F(x,y,z,u,v) =0. What is the general case?

=1

If the equations F(x, y,u,v) = 0and G(x, y, u, v) = Oare
solved for x and y as functions of u and v, show that

Ax,y)  B(F,G) [¥F, G
Au, vy o, v) [ dx,y)

If the equations x = f(u, v), y = g(u, v) can be solved for
u and v in terms of x and y, show that

| a(x, y)
A, v)’

Hint: use the result of Exercise 26.

du,v)
dx,y)

Ifx=fu,v),y=g@u,v),u=nhrs)andv=k(rs),
then x and y can be expressed as functions of r and s. Verify
by direct calculation that

Bx, y) _ 0x, y) B, v)
ar,s)  8(u,v) a(r,s)

This is a special case of the Chain Rule for Jacobians.
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*29. Two functions, f(x, y) and g(x, y), are said to be * 30. Prove the converse of the previous exercise as follows: Let
functionally dependent if one is a function of the other; that u= f(x,y)and v = g(x, y), and suppose that
is. if there exists a single-variable function k() such that a(u, v)/0(x, y) = 3(f, g)/3(x, y) is identically zero for all

As is the case for functions of one variable, power series representations and their
partial sums (Taylor polynomials) can provide an efficient method for determining
the behaviour of a smooth function of several variables near a point in its domain. In
this section we will look briefly at the extension of Taylor series to such functions.
As usual, we will develop the machinery for functions of two variables, but the
extension to more variables should be clear.

As a starting point, recall Taylor’s Formula for a function F (x) with continuous
derivatives of order up to # + 1 on the interval [a, a + h]:
@y BO@ PO
2! n! (n+ 1!
where X is some number between a and a + k. (The last term in the formula is the

Lagrange form of the remainder.) In the special case where a = 0 and & = 1, this
formula becomes

Fla+h) = F(a)+ F'(a)h +

’

F”(O) - F(n)(o) F("“)(Q)
2! n! (n+1)!

F(1) = F(0) + F'(0) +

for some 6 between 0 and 1.

Now suppose that f (x, y) has continuous partial derivatives up to order n + 1
at all points in an open set containing the line segment joining the points (a, b) and
(a + h, b+ k) in its domain. We can find the Taylor Formula for f(a + k, b + k)
in powers of & and k by applying the one-variable formula above to the function

F(t) = f(a+th,b+tk), 0<t<l1.

Clearly, F(0) = f(a,b) and F(1) = f(a + h,b + k). Let us calculate some
derivatives of F: ’

F'(t) = hfi(a+th, b+ tk) + kfa(a + th, b + tk),
F"(t) =k fi(a + th, b + tk) + 2hkfi2(a + th, b + tk)
+ k% faoa + th, b + tk),

F"(t) = (h3f111 + 3h%kfi1o + 3hK* fim + k3.f222)

(a+th,b+1k)
The pattern of binomial coefficients is pretty obvious here, but the notation, involv-
ing subscripts to denote partial derivatives of f, becomes more and more unwieldy
as the order of the derivatives increases. The notation can be simplified greatly
by using D; f and D, f to denote the first partials of f with respect to its first
and second variables. Since 4 and k are constant and mixed partials commute
(D Dy f = DyD4 f), we have

h2D?f +2hkD\ Dy f + k*D2 f = (hDy + kD)) f,




SECTION 12.9: Taylor Series and Approximations 775

and so on. Therefore,

F'(t) = (hDy + kDy) f(a +th, b + 1k),
F'(t) = (hDy +kDy)’ f(a +th, b + tk),
F"(t) = (hDy + kD)’ f(a + th, b + tk),

F™(t) = (hDy +kD3)" f(a + th, b + tk).

In particular, F™(0) = (hD; + sz)m f(a, b). Hence, the Taylor Formula for
fla+h,b+k)is

n

fla+hb+ky=> 1(th+sz) f(a,b)+ Ry(h, k)
_0

= Z Zcmj DID} ™ fla, by W K" + R,(h, k),

m=0 j=0

where, using the binomial expansion, we have

c _1 m _l m! _ 1
Tt \G) T om! jlm— ) jYm— )Y

and where the remainder term is given by

Ru(h, k) = (hDy +kDs)""" f(a+0h, b+ 6k)

(n+ 1)
for some 6 between 0 and 1. If f has partial derivatives of all orders and

lim R,(h, k) =0
n—>0oQ

then f(a + h, b + k) can be expressed as a Taylor series in powers of 2 and k:

fla+hb+k) = ZZ ‘(m DJD;"Jf(a b) kI k"=,

m==0 j=0 J

As for functions of one variable, the Taylor polynomial of degree n,

Pux,y) = ZZ »(m 5 DD f@ ) =) o - ",

provides the “best” nth-degree polynomial approximation to f(x, y) near (a, b).
For n = 1 this approximation reduces to the tangent plane approximation

flx,y) = fa,b) + fi(a,b)(x —a) + fa(a, b)(y — b).
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Find a second-degree polynomial approximation to the function

f(x,y) = /x2 + y3 near the point (1, 2) and use it to estimate /(1.02)% 4 (1.97)3.

Solution For the second-degree approximation we need the values of the partial
derivatives of f up to second order at (1,2). We have

fx,y)=Vx2+y? f(1,2)=3

X

1
f1(x,Y)=\/—ﬁ’; f1(1,2)=§

falx,y) ——3y2 £1,2)=2

2(x,y) = 2) =
2y/x2 4 y? ?
y3

(x2 + y?)2
—3xy? L2
2(x2 + y3)3/2 le( ’ ) - _§

8
Sulx,y) = fu,2) = >

frlx,y) =

12x%y + 3y* 2
folx,y)= m‘z‘ fo(1,2) = g

Thus,

1 1,8 2 2
1 A —h+ 2%+ —(—h*+2(—Z)hk + 2k
FA+h 24k ~3+h+ +2!(27 + ( 9) +3 )

or,settingx =1+ handy =24k,
1 4 , 2 1 )
fx,y) =3+§(x—1)+2(y—2)+57(x—1) —§(x—1)(y—2)+§(y-2) :

This is the required second-degree Taylor polynomial for f near (1, 2). Therefore,

(1022 4+ (1.97)3 = (1 +0.02,2 — 0.03)

1 4
~ 34 5(0'02) +2(—0.03) + ﬁ(o.oz)z

2 1
- 6(0.02)(—0.03) + 5(—0.03)2
~ 2.9471593 .

(For comparison purposes: the true value is 2.9471636 ... The approximation is
accurate to 6 significant figures.)

As observed for functions of one variable, it is not usually necessary to calculate
derivatives in order to determine the coefficients in a Taylor series or Taylor polyno-
mial. It is often much easier to perform algebraic manipulations on known series.
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For instance, the above example could have been done by writing f in the form

FA+h2+k) =0+ +@Q2+k?
=9+ 2h + B2 + 12k + 6k + K3

2h + h? + 12k + 6k2 + k3
=31+ 5

and then applying the binomial expansion

1 1/1 1
=l+-t+—{=){—-=)*+--
Vitr=1+; +2!(2)( 2) +

2h + h? 4+ 12k + 6k* + k3
with 1 = hth + + + to obtain the terms up to second degree in &

9
and k.

Find the Taylor polynomial of degree 3 in powers of x and y for
the function f(x, y) = e*™%.

Solution The required Taylor polynomial will be the Taylor polynomial of degree
3 for ¢’ evaluated at t = x — 2y:

1 1
Pi(x,y) = 14 (x = 29) + 53 (= 29)° + 3¢ = 29)°
1 1 4
=14+x—-2y+ Exz—ny+2y2+ gx3—x2y+2xy2— §y3.

Remark Maple can, of course, be used to compute multivariate Taylor polynomi-
als via its function mtaylor, which must be read in from the Maple library before
it can be used, because it is not part of the Maple kernel.
> readlib{mtaylor):
Arguments fed to mtaylor are as follows:
(a) an expression involving the expansion variables
(b) a list whose elements are either variable names or equations of the form
variable=value giving the coordinates of the point about which the expan-

sion is calculated. (Just naming a variable is equivalent to using the equation
variable=0.)

(c) (optionally) a positive integer m forcing the order of the computed Taylor
polynomial to be less than m. If m is not specified, the value of Maple’s global
variable “Order” is used. The default value is 6.

A few examples should suffice.
> mtaylor(cos(x+y"2),[x,v]);
1 1 1 1
1= 2242 O S S 0 S
2x yx+24x 2y +6yx
> mtaylor (cos (x+y"2), [x=Pi,v],5);

1 1 1
“lSG =m0 — ) - - oy
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> mtaylor(g(x,v), [x=a,y=bl,3);

1
g(a, b) + Di(®)(a, b)(x — @) + Da(8)(@, b)(y — b) + S D1.1(®)(a, b)(x — a)?
1
+(x — D12 @, b)(y = b) + 3 D22(g) (@, b)(y = b)*

In Maple V the functionmtaylor is a bit quirky. It has a tendency to expand linear
terms; for example, in an expansion about x = 1 and y = —2, it may rewrite terms
2+ (x — 1) + 2(y + 2) in the form 5 + x 4+ 2y. Also, it will often include terms
of higher order than requested when dealing with square roots or other fractional
powers. The following example illustrates both of these oddities:

> mtaylor(sqgrt(x+y), [x=1,y=31,1);

Lty Lo 1P - - D=3 - = -3
7T T e TV 64"

Approximating Implicit Functions

In the previous section we saw how to determine whether an equation in several
variables could be solved for one of those variables as a function of the others.
Even when such a solution is known to exist, it is not usually possible to find an
exact formula for it. However, if the equation involves only smooth functions, then
the solution will have a Taylor series. We can determine at least the first several
coefficients in that series and thus obtain a useful approximation to the solution.
The following example shows the technique.

Show that the equation
sin(x +y) =xy + 2x

has a solution of the form y = f(x) near x = 0 satisfying f(0) = 0, and find the
terms up to fourth degree for the Taylor series for f(x) in powers of x.

Solution The given equation can be written in the form F(x, y) = 0, where
F(x,y) =sin(x +y) —xy — 2x.

Since F(0,0) = 0 and F»(0,0) = cos(0) = 1 # 0, the equation has a solution
y = f(x)nearx = O satisfying f(0) = 0 by the implicit function theorem. It is not
possible to calculate f(x) exactly, but it will have a Maclaurin series of the form

y=f(x)=611x+a2x2+a3x3+a4x4+....

(There is no constant term because f(0) = 0.) We can substitute this series into
the given equation and keep track of terms up to degree 4 in order to calculate the
coefficients a1, a, as, and a4. For the left side we use the Maclaurin series for sin
to obtain
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sin(x +y) = sin((l +ap)x + arx? + asx® +agx* + - )
=({14+a)x +ax? +azx® +agxt 4 - -

1 3

_§<(1+a1)x+a2x2+...> 4.
2 1 3.3
={1+a)x+ax +(a3—6(1+a1) )x

3 ) .
+<a4—8(1+a1) a2>x I
The right side is
x)’+2x=2x+a1x2+a2x3+a3x4+...‘

Equating coefficients of like powers of x, we obtain

1+al=2 (11:1

a =a a =1

1(1 )3_ _7

03—6 +a) =am a3—3

(1 +ana; = =3

as 5 ay) ay = as as = 3.

Thus
7 13

y=f(X)=x+x2+§x3+—3—x4+~-.

(We could have obtained more terms in the series by keeping track of higher powers

of x in the substitution process.)
_u

Remark From the series for f(x) obtained above, we can determine the values
of the first four derivatives of f at x = 0. Remember that

I AO)

ar =
k k!

‘We have, therefore,

fO)=a =1 () =2la, =2
f7(0) =3la; =14 FP0) = 4lay = 104

We could have done the example by first calculating these derivatives by implicit
differentiation of the given equation and then determining the series coefficients
from them. This would have been a much more difficult way to do it. (Try it and
see.)
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|Exercises 12.9

In Exercises 1-6, find the Taylor series for the given function
about the indicated point.

L fx,v) = a2 (0,0)
2. fix,yy=In(l +x+y+xy), (0,0
3. feoy) =tan”'(x +xy), (O, -1
4 fly =x2+xy+yh (1=
5. i, v =" (0,0)
6. [(x,y)=sin(2x + 3y), (0,0)
In Exercises 7-12, find Taylor polynomials of the indicated

degree for the given functions near the given point. After
calculating them by hand, try to get the same results using
Maple’s mtaylor function.

7. f(x,v)= 2y degree 3, near (2, 1)

24 x —
8. f(x,v) =In(x? + y?), degree 3, near (1, 0)

x+_\2 R
9. flx,v)= / e~ " dt, degree 3, near (0, 0)
0

10. f(x, y) = cos(x + sin y), degree 4, near (0, 0)

1L f(x,y) = Sl%, degree 2, near (5, 1)

12. F(x.y) I+x
. X, =
VT

In Exercises 13—14, show that, for x near the indicated point
x = a, the given equation has a solution of the form y = f(x)
taking on the indicated value at that point. Find the first three
nonzero terms of the Taylor series for f(x) in powers of x — a.
*13. xsiny = y + sinx, near x = 0, with £(0) =0
*14. J1+xy=1+x+In(l+ y), near x =0, with f(0) =0
* 185,

degree 2, near (0, 0)

Show that the equation x + 2y + z + ¢%* = 1 has a solution
of the form z = f(x, y) near x =0, y = 0, where

£ (0, 0) = 0. Find the Taylor polynomial of degree 2 for
f(x, y) in powers of x and y.

Use series methods to find the value of the partial derivative
f112(0, 0) given that f(x, y) = arctan (x + y).

Use series methods to evaluate

* 16.

*17.

g 1
Ax2m 3y 1422+ 2| o o)

Chapter Review
Key Ideas

o What do the following sentences and phrases mean?
o Sis the graph of f(x, y).
o Cisalevel curve of f(x, y).
o limgy vy (a,b) fx, y) = L.
f{(x, v) is continuous at (a, b).
the partial derivative (8/9x) f (x, y)
the tangent plane to z = f(x, y) at (a, b)
pure second partials © mixed second partials

Jf(x, v) is a harmonic function.

>

S

o

o

o

& L(x, v) is the linearization of f(x, y) at (a, b).

¢ the differential of z = f(x, y)

o [(x, v)is differentiable at (a, b).

¢ the gradient of f(x, y) at (a, b)

¢ the directional derivative of f(x, y) at (a, b) in direction v

¢ the Jacobian determinant d(x, y)/d(u, v)

e Under what conditions are two mixed partial derivatives
equal?

o State the Chain Rule for z = f(x, y), where x = g(u, v),
and v = h(u, v).

¢ Describe the process of calculating partial derivatives of
implicitly defined functions.

o What is the Taylor series of f(x, y) about (a, b)?

Review Exercises
2

4
1. Sketch some level curves of the function x + —y—.
X

2. Sketch some isotherms (curves of constant temperature) for
the temperature function

;o 140+ 30x2 — 60x + 120y?
N 8+ x2 —2x +4y2

0.

What is the coolest location?

3. Sketch some level curves of the polynomial function
f(x,y) = x> — 3xy2. Why do you think the graph of this
function is called a monkey saddle?

3
-7, if(x, 0,0
4 Letf(r,)) =1 24,2 ' (x,y) # (0.0
0, if (x, y) = (0,0).
Calculate each of the following partial derivatives or ex-
plain why it does not exist: f1(0,0), f2(0,0), f2/(0,0),
1200, 0).




10.

11.

y
. Let f(x,y) = T

x3—y3

Where is f(x, y) continuous? To

what additional set of points does f(x, y) have a continuous
extension? In particular, can f be extended to be continuous
at the origin? Can f be defined at the origin in such a way
that its first partial derivatives exist there?

. The surface S is the graph of the function z = f(x, y), where

f (x y) — e,\"Z —2x—4y245 .

(a) Find an equation of the tangent plane to S at the point
(1, =1 D.

(b) Sketch a representative sample of the level curves of the
function f(x. y).

. Consider the surface § with equation x2 + y2 4 4z% = 16,

(a) Find an equation for the tangent plane to S at the point
(a,b,c)on S.

(b) For which points (a, b, ¢) on § does the tangent plane to
S at (a, b, ¢) pass through the point (0, 0, 4)? Describe
this set of points geometrically.

(c) For which points (g, b, ¢) on S is the tangent plane to S
at (a, b, ¢) parallel to the plane x + y + 2V27 =977

. Two variable resistors Ry and R are connected in parallel so

that their combined resistance R is given by

1 | 1

— = — 4+ —.
R R R>

If Ry = 100 ohms +5% and Ry = 25 ohms +2%, by ap-

proximately what percentage can the calculated value of their

combined resistance R = 20 ohms be in error?

. Youhave measured two sides of a triangular field and the angle

between them. The side measurements are 150 m and 200 m,
each accurate to within 41 m. The angle measurement is 30°,
accurate to within +2°. What area do you calculate for the
field, and what is your estimate of the maximum percentage
error in this area?

Suppose that T'(x, y,z) = x3y + y3z + z3x gives the tem-
perature at the point (x, y, z) in 3-space.

(a) Calculate the directional derivative of T at (2, —1, 0) in
the direction toward the point (1, 1, 2).

(by A fly is moving through space with constant speed 5. At
time 7 = 0 the fly crosses the surface 2x2+3y%+z2 = 11
at right angles at the point (2, —1, 0), moving in the
direction of increasing temperature. Find dT/dt att =0
as experienced by the fly.

Consider the function f(x, y, z) = x2y + yz + z°.
() Find the directional derivative of f at (1, —1, 1) in the
direction of the vector i + k.

(b) An ant is crawling on the plane x + y + z = 1 through
(1, =1, 1). Suppose itcrawls so as to keep f constant. In
what direction is it going as it passes through (1, —1, 1)?

(¢) Another ant crawls on the plane x + y + z = 1, moving
in the direction of the greatest rate of increase of f. Find
its direction as it goes through (1, —1, 1).

12.

13.

14.

15.

16.
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Let f(x,y,2) = (x% + z%)sin n—;l + yZz. Let Py be the

point (1, 1, —1).

(a) Find the gradient of f at Pp.

(b) Find the linearization L(x, v, z) of f at Pp.

(c) Find an equation for the tangent plane at Py to the level
surface of f through FPy.

(d) If a bird fiies through Py with speed 5, heading directly
toward the point (2, —1, 1), what is the rate of change of
f as seen by the bird as it passes through Pp?

(e) In what direction from Py should the bird fly at speed 5
to experience the greatest rate of increase of f?

Verify that for any constant & the function
u(x, y) = k(Incos(x/k) — Incos(y/ k)) satisfies the minimal
surface equation

1+ ui)uyy — utxUytey + (1 + u?,)ux)c =0.

The equations F(x,y,z) = 0 and G(x, y,z) = 0 can de-
fine any two of the variables x, y, and z as functions of the
remaining variable. Show that

dx dy dz

dy dz dx

X =u’—uv
y = 3uv + 2v%
of x and y near the point P where (4, v, x, y) = (—1,2, 1, 2).

The equations { define 1 and v as functions

0 d
(a) Find o and o at P.
ax ay
(b) Find the approximate value of ¥ when x = 1.02 and

y =197

u=x>+ y2
=x%- 2xy

functions of u and v for values of (x, y) near (1, 2) and values

of (u, v) near (5, =7).

The equations , define x and y implicitly as

? 3
(a) Find 2= and 22 at (u, v) = (5. =7).
ou ou

9
(b) If z = In(y2 — x2), find 8—Z at (u, v) = (5, - 7).
U

Challenging Problems

1.

2.

(a) If the graph of a function f(x, y) that is differentiable
at (a, b) contains part of a straight line through (a, b),
show that the line lies in the tangent plane toz = f(x, y)
at (a, b).

(b) If g(¢) is a differentiable function of ¢, describe the sur-
face z = yg(x/y) and show that all its tangent planes
pass through the origin.

A particle moves in 3-space in such a way that its direction
of motion at any point is perpendicular to the level surface of

f(x,y,z)=4—x2—2y2-1-3z2
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through that point. If the path of the particle passes through
the point (1, 1, 8), show that it also passes through (2, 4, 1).
Does it pass through (3, 7,0)?

. (The Laplace operator in spherical coordinates) If

u(x, v, z) has continuous second partial derivatives and
v{p, ¢,0) = u(psingcosf, psing sinb, p cos ¢),
show that
9%v +_2 v +_cot¢ v N 1 3% 1 9%
202 pap 02 3¢ p2a¢p?  p?sin?¢ 062
2u  u 0%y
"2t T ez
ax dy 9z
You can do this by hand, but it is a lot easier using computer
algebra.

4. (Spherically expanding waves) If f is a twice differentiable

function of one variable and p = /x2+ y2+ z2, show

flo—ct)
o

thatu(x, y,z,t) = satisfies the three-dimensional

wave equation

9%u 2 9%u + %u N 9%u
— = —=+—+—.
812 ax2  ay? o 8z?

What is the geometric significance of this solution as a func-
tion of increasing time ¢t? Hint: you may want to use the
result of Exercise 3. In this case v(p, ¢, 6) is independent of
¢ and 6.




