
Cascading &
Inheritance

CSS flows like
water.
It starts at the top and rushes
over a series of plateaus. What
matters most to us, though, is
usually the pool of water at the
bottom. The closer the plateau is
to that pool, the more effect it
has on the water that we can
actually interact with.

By Tristan Schmurr from Luxembourg, Luxembourg
(Waterfall) [CC BY 2.0 (http://creativecommons.org/licenses/
by/2.0)], via Wikimedia Commons

We see this in two main ways

Inheritance
Cascading

Inheritance.
Inheritance is the way in which
properties flow from parental
elements to child elements. So,
body { font-family:
Arial } will mean that Arial is
also the font-family of body p,
unless you define a different
font-family for body p.

Not everyone has
kids.
But not every property inherits.
It'd be crazy if background-
color or margin were to inherit.
If every single child element
inherited background-color,
you'd end up with a massive
area of overlapping background
colouring that would almost
certainly not be desirable.

Why inheritance rocks.
Imagine you want to have an
unordered list of things

<ul id = “things”>

in HTML. So you define
#things as we see at the right.

By using inheritance, you only
have to change the color in one
place, at #things.

#things {
 background: #013c57;
 color: #fff
 }

#things li a {
 color: inherit;
 }

Of course, this is a simple example,
so you're not saving that much time,
but as your code complexity grows,
inheritance, like The Force, becomes
a powerful ally.

Cascading finds
the winners.
Cascading is related to
inheritance. But its main
function is to determine what to
do when there is a conflict.
“Winners” are decided by these
three concepts.

1. Importance
2. Specificity
3. Source order

The importance of style sheet order.
Imagine Fandom had a class called
.yoda in its base CSS, like this:

.yoda { color : red }

but you created

.yoda { color : green }

in your local Wikia.css.

What color is Yoda gonna be?

Importance (that is, the
order in which style

sheets are considered)
agrees with the Star Wars

Galaxy.

He’s gonna be green.

Your wiki’s
stylesheets win
over Fandom’s.
Like our waterfall, the water
that's most important to our
experience is that which is
closest to the pool at the
bottom. Because Wikia.css
is loaded after Fandom’s
base CSS, it's closest to the
pool, so it "wins".

http://www.ForestWander.com [CC BY-SA 3.0 us (http://
creativecommons.org/licenses/by-sa/3.0/us/deed.en)], via Wikimedia
Commons

Local style sheet
pro-tip.
A good way to organise your
stylesheets is to blank
Common.css completely,
and put it all in Wikia.css.

http://www.ForestWander.com [CC BY-SA 3.0 us (http://
creativecommons.org/licenses/by-sa/3.0/us/deed.en)], via Wikimedia
Commons

It used to make sense to put most of
your code in Common, since that
code would be used in Monobook.
But since only a few thousand page
views a day are now in Monobook,
Common.css is less important these
days than it once was.

Another local CSS pro-tip.
Read Help:Including additional CSS and JS

It’s possible to load a style
sheet via Fandom’s
importArticle feature in
JavaScript.
But this method is subject to
JavaScript review — and it happens
after your articles are initially loaded.
That means your page will slightly
“flicker” as they adjust to CSS
imported via this method.

@import avoids these issues.

Specificity is next.
More specific selectors “win”
conflicts. So if you have

.yoda { color : red }

and

.yoda p { color : green }

in the same style sheet, the
color of the p text within yoda
class will be green.

By Tomruen - Own work, CC BY-SA 4.0, https://
commons.wikimedia.org/w/index.php?curid=40673932

Specificity is a calculation.
 Different things are given

numerical weights. And the
highest number wins. We
won’t bore you today with the
actual math, but there are tons
of specificty calculators
around.

A good one is at https://
specificity.keegan.st.

https://specificity.keegan.st
https://specificity.keegan.st
https://specificity.keegan.st

Source order.
Think of this as the
default way in which most
conflicts are solved
through cascading. If you
had .yoda defined in two
places in Wikia.css, the
one that's closest to the
bottom — nearest the
pool at the bottom of the
waterfall — is the one
that "wins".

By David.Monniaux (Own work) [GFDL (http://www.gnu.org/copyleft/
fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/
3.0/)], via Wikimedia Commons

Just say no to !important
It can be tempting to use !important, as with

.yoda { color : red!important }

This trumps everything we've just talked about. But you should
avoid using this, because it will override any cascading and make

errors a lot harder to catch.

If you want to ensure a property shows up (like color : green),
the best way to do it is to make your selectors more specific.

Questions?

